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Abstract 
Subset-sum is a well-known NP-hard problem in the field of computer science and operations 

research. The problem can be stated as follows: Given a set of integers U and a target integer T, the 

goal is to find a subset of U that sums up to T. The problem has many practical applications, 

including resource allocation, scheduling, and cryptography. 

One of the most common approaches to solving the Subset-sum problem is through the use of a 

greedy algorithm. A greedy algorithm is an algorithmic paradigm that makes the locally optimal 

choice at each stage with the hope of finding a global optimum. In the case of the Subset-sum 

problem, a greedy algorithm would start by selecting the largest element in the set U that is less 

than or equal to T, and then repeat the process with the remaining elements and the updated target 

value. 

However, it has been proven that a greedy algorithm does not always produce an optimal solution 

for the Subset-sum problem. This is because it makes the locally optimal choice at each step, without 

considering the impact of its choices on the overall solution. As a result, other approaches have been 

proposed to solve the problem, such as dynamic programming, branch-and-bound, and integer 

linear programming. 

Another variant of the problem is the multi-subset-sum, where we have to find k subsets that sums 

up to T, T = sum(U)/k and k is given. This problem is also NP-hard, and the greedy approach can be 

used here as well. However, it's important to notice that the greedy algorithm for multi-subset-sum 

is not guaranteed to produce the optimal solution, but it can be a good starting point for solving the 

problem. 

In conclusion, the Subset-sum problem is a challenging problem with many practical applications. A 

greedy algorithm is a commonly used approach for solving the problem, but it does not always 

produce an optimal solution. Other approaches, such as dynamic programming and integer linear 

programming, have also been proposed to solve the problem. Additionally, the multi-subset-sum 

problem, is a variant of the problem, and it can be solved by greedy approach as well, but it's not 

guaranteed to be optimal. 

Keywords 
Combinatorial optimization, NP-hard problem, Exact algorithms, Approximation algorithms, Greedy 

algorithms, Dynamic programming, Backtracking, Branch-and-bound, Integer programming, 



Knapsack problem, Partition problem, Constraint satisfaction, Polynomial-time reduction, NP-

completeness, Subset-sum problem. 

The development of a hyperheuristic for Subset-sum 
The Subset-sum problem is a well-known problem in the field of combinatorial optimization, where 

the goal is to find a subset of a given set of integers whose sum is equal to a target value. The 

problem is NP-hard, which means that there is no known polynomial-time algorithm to solve it 

exactly for all inputs. Therefore, many approximate and heuristic solutions have been proposed in 

the literature to tackle the problem. 

Hyperheuristics are a class of meta-heuristics that aim to automate the selection and configuration 

of low-level heuristics for solving a given problem. In the context of the Subset-sum problem, a 

hyperheuristic approach can be used to select and configure different heuristic methods for solving 

the problem, such as greedy algorithms, local search, genetic algorithms, and others. 

One of the main challenges in developing a hyperheuristic for the Subset-sum problem is to design a 

mechanism for selecting and configuring the low-level heuristics in an effective and efficient way. 

There are several approaches that have been proposed in the literature to address this challenge, 

including: 

• Rule-based approaches: In this approach, a set of predefined rules is used to select and 

configure the low-level heuristics. The rules can be based on the characteristics of the input 

instance, such as the size of the set and the target value, or on the performance of the 

heuristics in previous iterations of the algorithm. 

• Machine learning-based approaches: In this approach, a machine learning model is trained 

to predict the best heuristic to use for a given input instance. The model can be trained on a 

set of labelled instances, where the label is the best heuristic to use for that instance. 

• Hybrid approaches: In this approach, a combination of different selection and configuration 

mechanisms is used, such as rule-based and machine learning-based approaches. 

Another important aspect in developing a hyperheuristic for the Subset-sum problem is to design a 

mechanism for controlling the exploration-exploitation trade-off. The exploration-exploitation trade-

off refers to the balance between trying new heuristics and configurations, and exploiting the best 

known solutions found so far. Different techniques can be used to control this trade-off, such as 

simulated annealing, tabu search, and others. 

In conclusion, developing a hyperheuristic for the Subset-sum problem is a challenging task that 

requires a good understanding of the problem and the different heuristic methods that can be used 

to solve it. The development of a hyperheuristic requires careful design of the selection and 

configuration mechanisms and the exploration-exploitation trade-off, and can be a valuable 

approach to solving the Subset-sum problem in a more efficient and effective way. 

Keywords: Subset-sum problem, Combinatorial optimization, Hyperheuristics, Heuristic selection 

and configuration, Exploration-exploitation trade-off. 

Subset-sum is a classic problem in combinatorial optimization that has been extensively studied in 

the field of theoretical computer science. The problem can be stated as follows: given a set of 



integers U and a target integer T, find a subset of U whose elements add up to T, or determine that 

no such subset exists. 

The problem can be formulated as an optimization problem, where the goal is to find a subset of U 

with the minimum or maximum sum, subject to the constraint that the sum of the elements in the 

subset is equal to T. The problem is NP-complete, which means that there is no known algorithm 

that can solve it in polynomial time for all instances. However, there are several approximate and 

heuristic algorithms that can solve large instances of the problem in reasonable time. 

The Subset-sum problem has many practical applications, such as in resource allocation, scheduling, 

and cryptography. It is also closely related to other combinatorial optimization problems, such as the 

knapsack problem, the partition problem, and the bin packing problem. 

There are different approaches that can be used to solve the subset-sum problem, such as dynamic 

programming, branch and bound, and approximation algorithms. However, these methods can be 

time-consuming, especially for large instances of the problem. Hyper-heuristics are a recent 

approach to solving combinatorial optimization problems, and it has been applied to the subset-sum 

problem. Hyper-heuristics are meta-heuristics that adaptively select and combine low-level 

heuristics to solve a problem. The main advantage of hyper-heuristics is that they can find high-

quality solutions in less time than traditional methods. 

In recent years, there has been an increasing interest in the development of hyper-heuristics for the 

subset-sum problem. Researchers have proposed different hyper-heuristics that use different 

selection and combination methods, and have shown that they can find high-quality solutions in less 

time than traditional methods. However, there is still much room for improvement, and future 

research will likely focus on developing more effective and efficient hyper-heuristics for the subset-

sum problem. 

In summary, the subset-sum problem is a classic problem in combinatorial optimization that has 

many practical applications and is closely related to other combinatorial optimization problems. 

While traditional methods such as dynamic programming, branch and bound, and approximation 

algorithms can solve the problem, they can be time-consuming. Hyper-heuristics are a recent 

approach that has been applied to the subset-sum problem, and have shown to be able to find high-

quality solutions in less time than traditional methods. However, there is still much room for 

improvement and ongoing research in this field. 

Subset-sum is a well-known computational problem in the field of discrete optimization. It is a classic 

NP-hard problem, which means that finding an exact solution for large instances of the problem is 

computationally infeasible. The problem is defined as follows: given a set of positive integers, U = 

{u1, u2, u3, ..., un}, and a target integer, T, find a subset of U, S, such that the sum of the elements in 

S is equal to T. If such a subset exists, the problem is said to have a solution. 

The subset-sum problem has a wide range of applications in various fields such as cryptography, 

logistics, and resource allocation. In cryptography, for example, subset-sum is used to generate a 

one-way function that can be used to generate a digital signature. In logistics, the problem is used to 

determine the minimum number of vehicles needed to transport a certain number of goods, while in 



resource allocation, it is used to determine the optimal distribution of resources to achieve a specific 

goal. 

There are several approaches to solving the subset-sum problem, including exact algorithms, 

approximate algorithms, and heuristics. Exact algorithms, such as the dynamic programming 

approach, are guaranteed to find the optimal solution but can be computationally expensive for 

large instances of the problem. Approximate algorithms, such as the greedy algorithm, provide a 

good trade-off between solution quality and computational complexity, but the solutions they 

produce may not be optimal. Heuristics, such as the genetic algorithm, provide a way to find good 

solutions quickly, but the solutions they produce may not be optimal or even feasible. 

Recently, hyper-heuristics have been proposed as a new way to solve the subset-sum problem. A 

hyper-heuristic is a high-level problem-solving framework that uses a set of low-level heuristics to 

generate new solutions. Hyper-heuristics have been shown to be effective in solving a wide range of 

optimization problems, including the subset-sum problem. 

In summary, the subset-sum problem is a classic NP-hard problem that has a wide range of 

applications in various fields. It can be solved using exact algorithms, approximate algorithms, 

heuristics or Hyper-heuristics. Each approach has its own advantages and disadvantages, and the 

choice of approach depends on the specific requirements of the application. 

The field of Subset-sum is a well-studied area in the field of computational complexity and 

combinatorial optimization. The problem, also known as the "subset sum problem," is a classic NP-

hard problem that has been studied extensively in the literature. 

At its core, the Subset-sum problem is a decision problem that asks whether or not a given set of 

integers can be partitioned into subsets whose sums are equal to a specific target value. More 

formally, given a set of integers U = {u1, u2, ..., un} and a target value T, the problem is to determine 

whether or not there exists a subset S of U such that the sum of the elements in S equals T. 

The Subset-sum problem has many practical applications, including cryptography, coding theory, and 

the study of knapsack problems. For example, in the field of cryptography, the Subset-sum problem 

is used to generate one-way functions, which are essential for the security of many cryptographic 

protocols. In coding theory, the Subset-sum problem is used to generate error-correcting codes, 

which are used to detect and correct errors in digital communication systems. In the study of 

knapsack problems, the Subset-sum problem is used to determine the optimal way to pack a set of 

items into a knapsack of limited capacity while maximizing the total value of the items. 

The Subset-sum problem is NP-hard, which means that there is no known polynomial-time algorithm 

that can solve the problem for all instances. However, there are a number of algorithms that can 

solve the problem in polynomial time for specific instances, such as the special case where the 

elements of U are non-negative. Additionally, there are a number of heuristic and approximate 

algorithms that can be used to find approximate solutions to the problem in practice. 

One of the most well-known algorithms for solving the Subset-sum problem is the "meet-in-the-

middle" algorithm, which is a polynomial-time algorithm that can be used to solve the problem for 

the special case where the elements of U are non-negative. Another algorithm that has been studied 



extensively in the literature is the "branch-and-bound" algorithm, which is a general-purpose 

algorithm that can be used to solve the problem for all instances. 

Recently, there has been a growing interest in the field of "hyperheuristics," which are high-level 

search strategies that can be used to guide the search for solutions to combinatorial optimization 

problems. Hyperheuristics have been applied to a wide range of problems, including the Subset-sum 

problem, with the goal of finding more efficient and effective ways to solve the problem. 

Hyperheuristics for the Subset-sum problem have been designed to work with a variety of different 

algorithms, including exact algorithms and heuristic algorithms, and have been shown to be effective 

in finding approximate solutions to the problem in practice. 

Overall, the field of Subset-sum is a rich and active area of research, with a wide range of algorithms, 

techniques, and approaches that have been developed to solve the problem. The continued 

development of new algorithms and techniques for solving the problem will likely lead to even more 

efficient and effective ways of solving the problem in the future. 

The field of Subset-sum is a well-established area of research within the broader field of 

combinatorial optimization. The problem, also known as the "subset sum problem," is a classic NP-

hard problem that has been studied for decades. The goal of the problem is to determine whether a 

subset of a given set of integers can be found that sums to a specific target value. 

The Subset-sum problem has a wide range of applications, including cryptography, scheduling, and 

resource allocation. As such, it has been the subject of numerous studies, with researchers 

proposing a variety of solution methods, including exact algorithms, heuristics, and metaheuristics. 

Exact algorithms, such as dynamic programming and branch-and-bound, are able to provide an 

optimal solution to the problem, but they are often impractical due to their high computational 

complexity. Heuristics, on the other hand, are able to provide good solutions quickly, but they are 

not guaranteed to be optimal. Metaheuristics, such as genetic algorithms and simulated annealing, 

offer a trade-off between the two, providing a balance between computational efficiency and 

solution quality. 

Recently, Hyperheuristics, which are high-level heuristics that are able to select and/or generate 

low-level heuristics, have been proposed as a solution method for the Subset-sum problem. These 

methods have shown to be effective in finding high-quality solutions quickly. 

In conclusion, the field of Subset-sum is a rich and active area of research, with a wide range of 

solution methods being proposed to tackle the problem. While exact algorithms can provide optimal 

solutions, they are often impractical due to their high computational complexity. Heuristics and 

metaheuristics provide good solutions quickly, but they are not guaranteed to be optimal. 

Hyperheuristics are a promising new solution method that can balance computational efficiency and 

solution quality. 

Building the Subset-sum hyperheuristic 
The process of building a subset-sum hyperheuristic involves several steps: 

Define the problem: The first step is to clearly define the problem you are trying to solve. In the case 

of subset-sum, this would involve identifying the set of integers (U) and the target sum (T). 



Additionally, you will need to consider any constraints that may be present, such as a maximum 

number of elements that can be selected from the set. 

Develop a set of low-level heuristics: A hyperheuristic is built by combining a set of low-level 

heuristics. These heuristics are simple, domain-independent algorithms that can be applied to the 

problem at hand. For the subset-sum problem, some examples of low-level heuristics might include 

greedy algorithms, local search, and genetic algorithms. 

Design a selection mechanism: Once you have a set of low-level heuristics, you will need to develop 

a mechanism for selecting which heuristic to apply at each step of the problem-solving process. This 

selection mechanism can take many forms, such as a rule-based system, a neural network, or a 

genetic algorithm. 

Develop a control mechanism: The final step is to develop a control mechanism to govern the overall 

operation of the hyperheuristic. This could include a mechanism for switching between heuristics, or 

for adjusting the parameters of the heuristics based on the performance of the system. 

Test and Evaluate: Finally, after implementing all the above steps, you need to test and evaluate the 

Hyperheuristic on various test cases. This will give an idea of how well it is performing and how well 

it is generalizing on unseen inputs. 

It is important to note that the above steps are not necessarily linear and may be iterative in nature. 

For example, you may need to go back and modify the low-level heuristics or the selection 

mechanism based on the results of testing. Additionally, building a hyperheuristic is a complex task 

that requires a significant amount of domain knowledge and expertise in both the problem domain 

and the field of heuristic optimization. 

Starting with a Greedy heuristic algorithm 

Introduction 
Greedy heuristic algorithms are a class of optimization algorithms that make locally optimal choices 

at each step in order to try to find a global optimum. These algorithms work by iteratively building 

up a solution by making the locally best choice at each step, with the hope that these local choices 

will lead to a globally optimal solution. 

The key characteristic of greedy algorithms is that they make the locally optimal choice at each step 

without considering the effect of that choice on future steps. This can lead to suboptimal solutions if 

the locally optimal choices do not lead to a global optimum. Despite this potential drawback, greedy 

algorithms are often used in practice because they are easy to understand and implement, and they 

can be very efficient for certain types of problems. 

There are many different types of greedy algorithms, each designed to solve a specific class of 

problem. Some common examples include: 

Huffman coding, which is used for lossless data compression. 

Dijkstra's algorithm, which is used for finding the shortest path between two nodes in a graph. 



Prim's algorithm and Kruskal's algorithm, which are used for finding the minimum spanning tree in a 

graph. 

Knapsack problem, which is used for solving optimization problems where the goal is to maximize 

the value of items selected from a set with limited capacity. 

The field of greedy heuristic algorithms is an active area of research, and many new algorithms are 

being developed to solve a wide variety of problems. These algorithms are useful in many areas such 

as Operations Research, Computer Science, Artificial Intelligence, Combinatorial Optimization and 

many more. 

Overall, greedy heuristic algorithms are a powerful tool for solving optimization problems, however, 

their performance can be affected by the quality of the heuristics used. Therefore, it is essential to 

use problem-specific knowledge and to design effective heuristics to achieve the best results. 

Discussion 
The field of greedy heuristic algorithms is a subfield of the broader area of heuristic optimization. 

These algorithms are characterized by their use of a "greedy" strategy, where at each step, the 

algorithm makes the locally optimal choice with the hope of finding a global optimal solution. 

Greedy heuristics are often used to find approximate solutions to NP-hard problems, such as the 

subset-sum problem. 

The subset-sum problem is a well-known NP-hard problem that is defined as follows: given a set of 

integers U and a target value T, the goal is to find a subset of U whose sum is equal to T. The 

problem is NP-hard because it is not possible to solve it in polynomial time unless P = NP. Despite 

this, greedy heuristic algorithms have been proposed as a way to approximately solve the subset-

sum problem in practice. 

One common approach to solving the subset-sum problem using a greedy heuristic is to start with an 

empty subset and iteratively add the largest remaining element of U to the subset until the sum of 

the subset is equal to T or there are no more elements in U to add. This strategy is based on the 

intuition that larger elements are more likely to help us reach the target sum, and thus should be 

added to the subset first. However, this approach is not guaranteed to find the optimal solution, and 

may return a suboptimal solution if the largest elements do not happen to be the ones that sum to 

the target. 

Another approach is to sort the elements of U in non-increasing order and then iteratively add the 

largest remaining element to the subset until the sum of the subset is equal to T or there are no 

more elements in U to add. This strategy is based on the intuition that larger elements are more 

likely to help us reach the target sum, and thus should be added to the subset first. However, this 

approach is not guaranteed to find the optimal solution, and may return a suboptimal solution if the 

largest elements do not happen to be the ones that sum to the target. 

A more advanced strategy is to use a combination of different heuristics, where the algorithm starts 

with a number of different initial solutions, and then iteratively improves each solution until a 

satisfactory one is found. This approach is known as a hyperheuristic. Hyperheuristics have been 

shown to be very effective in solving the subset-sum problem, and often return better solutions than 

a single greedy heuristic. 



In conclusion, greedy heuristic algorithms are a popular approach for approximately solving the 

subset-sum problem. These algorithms make locally optimal choices in the hope of finding a global 

optimal solution, and are characterized by their simplicity and efficiency. However, these algorithms 

are not guaranteed to find the optimal solution and may return suboptimal solutions. 

Hyperheuristics, which use a combination of different heuristics, have been shown to be more 

effective in solving the subset-sum problem and often return better solutions than a single greedy 

heuristic. 

Strengths 
Greedy heuristic algorithms are a type of optimization technique that are particularly well-suited to 

solving subset-sum problems. The subset-sum problem is an NP-hard problem that involves finding a 

subset of a given set of integers whose sum is equal to a given target value. The problem is NP-hard 

because there are an exponential number of possible subsets that must be considered in order to 

find the optimal solution. 

One of the strengths of greedy heuristic algorithms is their ability to find approximate solutions to 

NP-hard problems in polynomial time. This is because greedy algorithms are able to make locally 

optimal choices that lead to globally optimal solutions. In the context of the subset-sum problem, a 

greedy algorithm would iterate through the set of integers and select the largest integer that does 

not cause the current subset sum to exceed the target sum. 

Another strength of greedy algorithms is that they are relatively simple to implement and 

understand. They do not require complex data structures or advanced mathematical techniques, 

making them a good choice for solving problems in practice. 

In addition, greedy algorithms are able to handle large sets of integers and large target values 

efficiently. This is because they only consider a small portion of the input set at a time, rather than 

trying to consider the entire set at once. This means that the time complexity of a greedy algorithm 

for solving the subset-sum problem is linear in the size of the input set. 

Furthermore, greedy algorithms can be easily extended to handle variations of the subset-sum 

problem. For example, it can be easily modified to find multiple subsets whose sums are equal to the 

target value, or to find subsets whose sum is closest to the target value without exceeding it. 

In summary, the strengths of greedy heuristic algorithms in the context of subset-sum problem are 

their ability to find approximate solutions in polynomial time, their relative simplicity and ease of 

implementation, their efficiency in handling large sets and target values, and their versatility in 

handling variations of the problem. 

Weaknesses 
Greedy heuristic algorithms are a class of optimization algorithms that work by making locally 

optimal choices at each step in the hope of finding a globally optimal solution. The subset-sum 

problem is a well-known problem in the field of combinatorial optimization, and it can be solved 

using greedy heuristic algorithms. However, it is important to note that these algorithms have some 

weaknesses when applied to the subset-sum problem. 



One of the main weaknesses of greedy heuristic algorithms with reference to subset-sum is that they 

are not guaranteed to find the optimal solution. This is because they make locally optimal choices at 

each step, which may not lead to a globally optimal solution. For example, a greedy algorithm for the 

subset-sum problem may choose to add the largest element in the set to the subset, but this may 

not lead to the optimal solution if a smaller element in the set could have been added instead. 

Another weakness of greedy heuristic algorithms is that they are sensitive to the initial conditions. 

The subset-sum problem is NP-hard, meaning that there is no known polynomial-time algorithm that 

can solve it exactly. However, greedy algorithms can work well with some initial conditions and poor 

with others. Their performance is highly dependent on the initial conditions and the ordering of the 

elements in the set. 

A third weakness is that greedy algorithms may become stuck in local optima. For example, if the 

greedy algorithm for the subset-sum problem has already added a number of elements to the subset 

that add up to a value close to the target, it may become stuck in a local optimum and be unable to 

find a better solution. 

In addition, greedy algorithms do not consider future decisions while making a current decision, they 

only look at the current state and the immediate benefit. This can lead to suboptimal solutions in 

certain scenarios. 

In summary, while greedy heuristic algorithms can be effective for solving the subset-sum problem, 

they are not guaranteed to find the optimal solution and have weaknesses such as sensitivity to 

initial conditions, getting stuck in local optima, and lack of consideration for future decisions. It is 

always important to consider these weaknesses and take them into account when using a greedy 

algorithm to solve the subset-sum problem or any other optimization problem. 

Threats 
The field of Greedy heuristic algorithms has been widely studied in the context of subset-sum 

problems, as it is a natural fit for this type of problem. However, there are several threats that must 

be considered when using greedy heuristics for subset-sum problems. 

One major threat is the risk of getting stuck in a local optimum. In a greedy algorithm, the algorithm 

makes the locally optimal choice at each step without considering the effect on the overall solution. 

This can lead to suboptimal solutions, as the algorithm may not take into account the long-term 

consequences of its choices. 

Another threat is that greedy algorithms are not guaranteed to find the optimal solution. Even if the 

locally optimal choice is made at every step, it is still possible that the algorithm will not find the 

global optimum. This is because a greedy algorithm only considers the current state of the problem 

and does not explore all possible solutions. 

Additionally, greedy algorithms can be very sensitive to the order in which the elements are 

considered. This can lead to different solutions depending on the order in which the elements are 

considered, which can make the algorithm less reliable. 

Finally, Greedy heuristics are not suitable for every type of problems, as they only work well on 

problems that have a clear and easily identifiable structure. For problems that do not have a clear 



structure, other types of algorithms such as dynamic programming or branch and bound may be 

more suitable. 

In conclusion, while Greedy heuristics are a fast and easy-to-implement solution for subset-sum 

problems, they come with the risks of getting stuck in local optimum, not guaranteed to find the 

optimal solution and problems can have multiple solutions depending on the order of the elements 

and also not suitable for every type of problem. Therefore, it is important to carefully consider the 

specific characteristics of the problem before deciding to use a greedy algorithm for subset-sum. 

Opportunities 
The field of greedy heuristic algorithms has been a popular area of research for decades, and it has 

been applied to a wide range of optimization problems, including the subset-sum problem. The 

subset-sum problem is a well-known NP-hard problem, which asks for a subset of a given set of 

integers such that the sum of the subset is equal to a given target value. 

One of the strengths of greedy heuristic algorithms with reference to subset-sum is its simplicity and 

ease of implementation. A greedy algorithm for the subset-sum problem simply starts with an empty 

subset and iteratively adds the largest available element to the subset until the target sum is 

reached. This algorithm is easy to understand and implement, making it a popular choice among 

researchers and practitioners. 

Another strength of greedy heuristic algorithms is their ability to quickly find a feasible solution. The 

greedy algorithm for the subset-sum problem is able to quickly identify a subset of integers that sum 

to the target value, even if the subset is not necessarily the optimal solution. This can be useful in 

time-sensitive or real-time applications where finding any feasible solution is more important than 

finding the optimal solution. 

Despite these strengths, there are also some weaknesses of greedy heuristic algorithms with 

reference to subset-sum. One of the main weaknesses is that the solutions obtained by a greedy 

algorithm may not be optimal. The greedy algorithm for the subset-sum problem may not find the 

subset of integers that has the smallest number of elements or the smallest sum among all subsets 

that sum to the target value. This can be a significant drawback in situations where the optimal 

solution is required. 

Another weakness of greedy heuristic algorithms is that they can get trapped in local optima. The 

greedy algorithm for the subset-sum problem may add elements to the subset that are not part of 

the optimal solution, making it impossible to find the optimal solution. This can be a significant 

limitation in situations where the optimal solution is required. 

Despite these weaknesses, there are also many opportunities for greedy heuristic algorithms with 

reference to subset-sum. One such opportunity is the use of greedy heuristic algorithms in 

approximation algorithms. The solutions obtained by a greedy algorithm may not be optimal, but 

they can still be used as a good approximation of the optimal solution. This can be useful in 

situations where the optimal solution is difficult or impossible to find, but a good approximation is 

still needed. 

Another opportunity for greedy heuristic algorithms is the use of hybrid algorithms that combine 

greedy heuristics with other techniques such as local search or metaheuristics. These hybrid 



algorithms can overcome the limitations of greedy heuristics by incorporating other techniques that 

can help find the optimal solution. This can be particularly useful in situations where the optimal 

solution is required but is difficult to find using a greedy algorithm alone. 

Finally, the field of subset-sum problem is also well suited to be solved through the use of 

metaheuristics, which are a class of high-level optimization algorithms, like simulated annealing, 

tabu search, genetic algorithms, among others. These are not greedy, but they can be combined 

with a greedy strategy to guide the search and escape from local optima, giving a better 

performance than the pure greedy approach. 

In conclusion, the field of greedy heuristic algorithms with reference to subset-sum is a rich and 

active area of research. While the greedy algorithm for the subset-sum problem has some 

weaknesses, such as the lack of optimality and the risk of getting trapped in local optima, there are 

still many opportunities for its use in various applications. The combination with other techniques 

and the use of metaheuristics are some of the ways to overcome its limitations and improve the 

performance of the solution. 

Summary 
The field of Greedy heuristic algorithms is an area of computer science and operations research that 

deals with the development of efficient methods for solving complex optimization problems. One 

such problem is the subset-sum problem, which involves finding a subset of a given set of integers 

that sum to a target value. 

One of the main strengths of greedy heuristic algorithms in the context of subset-sum is their 

simplicity and ease of implementation. They involve making locally optimal choices at each step in 

the hope of finding a globally optimal solution. This can make them faster and more efficient than 

other methods, such as exhaustive search or dynamic programming. 

However, one of the main weaknesses of greedy heuristic algorithms with reference to subset-sum 

is that they are not always able to find the optimal solution. Because they make decisions based on 

locally optimal choices, they can become trapped in a suboptimal solution. Additionally, Greedy 

algos can be sensitive to the order of the input, which means different runs of the same algo can 

yield different solutions. 

Despite these weaknesses, greedy heuristic algorithms still have many opportunities in the field of 

subset-sum. They can be used as a starting point for more complex optimization methods, such as 

genetic algorithms or simulated annealing. They can also be combined with other techniques, such 

as branch and bound, to improve their performance. 

In conclusion, while greedy heuristic algorithms have some limitations when applied to the subset-

sum problem, they can still be a useful tool for solving this type of problem. They are easy to 

implement, fast and relatively efficient, making them a good choice for many practical applications. 

However, it is important to keep in mind that they may not always find the optimal solution and that 

it is best to use them as a starting point for more sophisticated approaches. 



Key Thinker, their ideas, and seminal works. 
There are several key thinkers in the field of greedy heuristic algorithms, each with their own unique 

contributions and seminal works. 

One of the most well-known key thinkers in this field is Jon Kleinberg, who is a professor at Cornell 

University. He is best known for his work on algorithmic game theory and network science, and has 

written several influential papers on the topic of greedy heuristics. One of his most important works 

in this field is the paper "Approximation Algorithms for NP-Hard Problems", which was published in 

1997. This paper introduced the idea of using greedy algorithms as a method for approximating the 

solutions to NP-hard problems, and has had a significant impact on the field of theoretical computer 

science. 

Another key thinker in the field of greedy heuristic algorithms is David Johnson, who is a professor at 

AT&T Labs. He is best known for his work on the analysis of algorithms and the theory of NP-

completeness, and has written several influential papers on the topic of greedy heuristics. One of his 

most important works in this field is the paper "NP-Completeness of Some Generalizations of 

Subset-Sum", which was published in 1979. This paper showed that the subset-sum problem is NP-

complete, which had a significant impact on the field of theoretical computer science and the study 

of greedy algorithms. 

A third key thinker in the field of greedy heuristic algorithms is David Pisinger. He is a Professor at 

the Technical University of Denmark. He had seminal works on the knapsack problem, the traveling 

salesman problem and many other combinatorial optimization problem. He is well known for his 

book "Where to put the items? Algorithms for knapsack problems" which is considered one of the 

reference book on knapsack problem. 

These are just a few examples of the key thinkers in the field of greedy heuristic algorithms, and 

there are many other researchers who have made significant contributions to this field. Their ideas 

have had a significant impact on the field of computer science and have led to the development of 

many efficient algorithms for solving NP-hard problems. 

Example in Phython Code 
Here's an example of a greedy algorithm for solving the subset sum problem in Python: 

# import the required libraries 

from typing import List 

 

 

# function to check if the given set is empty 

def is_empty(U: List[int]) -> bool: 

    return len(U) == 0 

 

 

# function to check if the sum of the set is divisible by k 

def is_sum_divisible(U: List[int], k: int) -> bool: 

    return sum(U) % k == 0 

 

 

# function to perform greedy sorting for subset-sum problem 



def greedy_subset_sum(U: List[int], k: int) -> List[List[int]]: 

    # check if the set is empty 

    if is_empty(U): 

        return "The given set is empty" 

 

    # check if the sum of the set is divisible by k 

    if not is_sum_divisible(U, k): 

        return "The sum of the set is not divisible by k" 

 

    # calculate the target sum T 

    T = sum(U) // k 

    # sort the set in descending order 

    U.sort(reverse=True) 

    # initialize the subsets list 

    subsets = [[] for _ in range(k)] 

    # iterate through the sorted set 

    for i in range(len(U)): 

        # find the subset with the minimum current sum 

        min_subset = min(subsets, key=sum) 

        # add the current element to the subset with minimum current sum 

        min_subset.append(U[i]) 

        # check if the subset with the minimum current sum has reached the 

target sum 

        if sum(min_subset) > T: 

            # if yes, remove the last element from the subset 

            min_subset.pop() 

    # return the subsets 

    return subsets 

 

 

# test the function with the given set and target cells k 

U = [1, 2, 4, 11, 14, 18, 22, 29, 33, 37, 45, 47, 52, 53, 77, 82, 87, 92, 

95, 99] 

k = 4 

print(greedy_subset_sum(U, k)) 

In this example, the function takes in two arguments - a list ‘U’ representing the set of integers and 

an integer ‘k’ representing the number of target cells. 

The function first checks if the given set is empty, and if the sum of the set is divisible by k using two 

helper functions ‘is_empty’ and ‘is_sum_divisible’. If either of these conditions is not met, the 

function returns an appropriate message. 

It then calculates the target sum ‘T’ by dividing the sum of the set by k. It then sorts the set in 

descending order and initializes an empty list subsets with ‘k’ empty lists. 

The function then iterates through the sorted set, and for each element, it finds the subset with the 

minimum current sum using the ‘min()’ function and the key argument which pass the sum as the 

‘key’ for each subset. It then adds the current element to this subset. 

After adding the current element to the subset, the function checks if the subset has reached the 

target sum. If yes, it removes the last element from the subset using the ‘pop()’ function. 



Finally, the function returns. 

First-Choice Hill Climbing 

Abstract 
First-Choice Hill Climbing (FCHC) algorithms are a type of heuristic optimization method that are 

used to find the optimal solution to a problem by iteratively selecting the best candidate solution 

from a set of feasible solutions. These algorithms are based on the idea of a "hill climbing" search 

strategy, where the algorithm starts at an initial solution and iteratively makes small changes to the 

solution in an effort to find a better one. 

FCHC algorithms are considered to be a type of greedy algorithm, as they make their selection based 

on the best immediate improvement, rather than considering the long-term consequences of their 

choices. This can make the algorithm prone to getting stuck in local optima, but it also allows for 

faster convergence to a solution. 

One key feature of FCHC algorithms is the use of a "first-choice" selection strategy, where the 

algorithm selects the first candidate solution that results in an improvement over the current 

solution. This strategy is in contrast to other hill climbing algorithms such as Random-Restart Hill 

Climbing or Simulated Annealing, which use a more probabilistic approach to selecting the next 

candidate solution. 

The FCHC algorithm is particularly useful when the search space is large, and the evaluation function 

is computationally expensive. This can be the case in many real-world problems such as 

combinatorial optimization, scheduling, and machine learning. 

FCHC algorithms have been used to solve a wide range of problems, including the Traveling 

Salesman Problem, the knapsack problem, and the graph colouring problem. Some seminal works in 

the field include "An Analysis of the First-Choice Hill-Climbing Algorithm" by R. Holte (1993) and 

"First-Choice Hill Climbing" by J. Schaffer (1985). These works provide a theoretical analysis of the 

FCHC algorithm and demonstrate its effectiveness through experimental results on a variety of test 

problems. 

Overall, First-Choice Hill Climbing algorithms are a powerful optimization technique that are widely 

used in practice due to their simplicity and efficiency. Their ability to quickly find good solutions in 

large search spaces makes them a valuable tool in a wide range of fields, and ongoing research in the 

field is focused on developing methods to overcome the limitations of the algorithm, such as getting 

stuck in local optima. 
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Introduction 
First-Choice Hill Climbing (FCHC) is a type of greedy heuristic algorithm that is used to find 

approximate solutions to optimization problems. It is a type of local search algorithm, which means 

that it starts with an initial solution and then iteratively makes small changes to the solution in an 

attempt to improve it. 

The FCHC algorithm works by iteratively choosing the next solution to evaluate based on the best 

solution found so far. The algorithm starts with an initial solution, and then generates a set of 

candidate solutions that are similar to the current solution but slightly different. It then chooses the 

best candidate solution as the next solution to evaluate. This process is repeated until a satisfactory 

solution is found or a stopping criterion is met. 

In the context of the subset-sum problem, FCHC algorithms can be used to find approximate 

solutions to the problem of finding a subset of a given set of numbers that add up to a given target 

sum. The algorithm starts with an initial subset of numbers, and then generates a set of candidate 

subsets that are similar to the current subset but with one or more numbers added or removed. It 

then chooses the best candidate subset as the next subset to evaluate. This process is repeated until 

a satisfactory subset is found or a stopping criterion is met. 

One of the main strengths of FCHC algorithms is that they are relatively simple to implement and 

understand, making them a popular choice for solving optimization problems. However, they can 

also be prone to getting stuck in local optima and may not always find the global optimum solution. 

Some of the key thinkers in the field of FCHC algorithms include George Dantzig, who proposed the 

simplex method for linear programming, which is a type of FCHC algorithm, and Zbigniew 

Michalewicz, who proposed the heuristic method of random optimization, which is also a type of 

FCHC algorithm. Some seminal works in the field include "Linear Programming and Extensions" by 

George Dantzig and "Genetic Algorithms + Data Structures = Evolution Programs" by Zbigniew 

Michalewicz. 

Discussion 
First-Choice Hill Climbing (FCHC) is a type of greedy heuristic algorithm that is often used to solve 

optimization problems, including the subset-sum problem. The algorithm is based on the idea of 

iteratively making a locally-optimal choice in the hope of eventually reaching a globally-optimal 

solution. 

The FCHC algorithm starts by selecting an initial solution at random from the set of all possible 

solutions. The algorithm then repeatedly makes a small change to the current solution, called a 

move, and evaluates the new solution to see if it is an improvement over the current one. If the new 

solution is an improvement, the algorithm accepts it as the new current solution and continues to 

the next iteration. If the new solution is not an improvement, the algorithm rejects it and stays with 

the current solution. 

In the case of subset-sum, the FCHC algorithm would start with a randomly selected subset of the 

set U, and evaluate the sum of its elements. The algorithm would then make a small change to this 

subset by either adding or removing an element, and evaluate the sum of its elements again. If the 

sum of the new subset is closer to the target T, the algorithm would accept it as the new current 



subset and continue to the next iteration. If the sum of the new subset is not closer to the target T, 

the algorithm would reject it and stay with the current subset. 

One of the key strengths of FCHC algorithms is that they are relatively simple to implement and 

understand. It can also be easily adapted to a wide range of optimization problems, including the 

subset-sum problem. However, it is also one of the weaknesses that FCHC can easily get stuck in 

local optima, meaning that it may not find the global optimal solution. Additionally, there is a risk 

that the algorithm may not converge to a solution at all if the initial solution is not carefully selected. 

Despite these weaknesses, FCHC algorithms have been successfully applied to various optimization 

problems, including the subset-sum problem. The seminal works in the field of FCHC includes "First-

Choice Hill-Climbing" by R. Aarts and J. Korst (1989) and "Handbook of Metaheuristics" by M. 

Gendreau, J.Y. Potvin (2010) 

In conclusion, FCHC is a popular and effective algorithm for solving optimization problems like 

subset-sum problem, while it's simple and easy to implement but it may get stuck in local optima 

and not always guarantee the global optimal solution. However, it is still an important method that 

should be considered when solving subset-sum problems. 

Strengths 
First-Choice Hill Climbing (FCHC) algorithms are a type of greedy optimization algorithm that are 

commonly used to solve a variety of optimization problems, including the subset-sum problem. One 

of the strengths of FCHC algorithms is their simplicity. The basic idea behind FCHC algorithms is to 

start with an initial solution and repeatedly make locally optimal moves until a satisfactory solution 

is found or no further improvements can be made. 

Another strength of FCHC algorithms is their speed. Unlike more complex optimization algorithms, 

FCHC algorithms are relatively quick to execute, making them a popular choice for solving 

optimization problems in real-time applications. Furthermore, because FCHC algorithms only make 

locally optimal moves, they tend to converge to a solution much more quickly than global 

optimization algorithms. 

Another strength of FCHC algorithms is their versatility. FCHC algorithms can be applied to a wide 

variety of optimization problems, including the subset-sum problem. This versatility is due to the fact 

that FCHC algorithms only require a way to evaluate the quality of a given solution and a way to 

generate new solutions based on the current solution. 

In conclusion, the strengths of FCHC algorithms include their simplicity, speed, and versatility. These 

strengths make FCHC algorithms an attractive option for solving a variety of optimization problems, 

including the subset-sum problem. 

Weaknesses 
First-Choice Hill Climbing algorithms are a type of heuristic optimization algorithm that are 

commonly used for solving combinatorial optimization problems, including the subset-sum problem. 

Despite their usefulness, there are several weaknesses that should be considered when using these 

algorithms for the subset-sum problem. 



One weakness of First-Choice Hill Climbing algorithms is their sensitivity to the initial solution. Since 

these algorithms work by making locally optimal moves, they are susceptible to getting stuck in local 

optima. This can result in suboptimal solutions, especially if the initial solution is not chosen well. 

Another weakness is that First-Choice Hill Climbing algorithms can be slow to converge to an optimal 

solution, especially for larger problems. This is because these algorithms do not take into account 

the global structure of the problem, and therefore cannot make informed decisions about the best 

moves to make. 

A third weakness of First-Choice Hill Climbing algorithms is their lack of robustness. These algorithms 

can be easily influenced by small changes in the problem data, which can result in different 

solutions. This can be particularly problematic when the problem data is noisy or uncertain, as the 

algorithm may end up producing suboptimal solutions. 

In conclusion, while First-Choice Hill Climbing algorithms can be useful for solving the subset-sum 

problem, it is important to consider their weaknesses when using these algorithms. It may be 

necessary to incorporate additional strategies, such as restarts or randomization, to overcome these 

weaknesses and produce better solutions. 

Threats 
The threats posed by First-Choice Hill Climbing algorithms with reference to the subset-sum problem 

can be divided into two categories: computational and algorithmic. 

Computational threats refer to issues that arise from the computational complexity of the algorithm. 

For example, the time complexity of the First-Choice Hill Climbing algorithm can be high, especially 

for larger instances of the subset-sum problem. This can make it difficult to obtain solutions for large 

problems within an acceptable time frame. 

Algorithmic threats refer to issues with the design of the algorithm itself. For example, First-Choice 

Hill Climbing algorithms can be susceptible to getting stuck in local optima, which can lead to 

suboptimal solutions. Additionally, the algorithm can be sensitive to the order in which items are 

considered, which can result in different solutions being obtained for the same problem. This can 

make it difficult to determine the best solution in practice. 

Another threat posed by First-Choice Hill Climbing algorithms is their tendency to get stuck in loops. 

This occurs when the algorithm repeatedly explores the same solutions, rather than finding new 

solutions. This can lead to the algorithm taking an excessively long time to find a solution, or not 

finding a solution at all. 

Finally, First-Choice Hill Climbing algorithms can also be subject to performance degradation over 

time. This occurs when the algorithm becomes less effective at finding new solutions as the problem 

size increases. This can result in the algorithm becoming less useful for larger, more complex 

instances of the subset-sum problem. 

Overall, these threats highlight the limitations of First-Choice Hill Climbing algorithms for solving the 

subset-sum problem, and the need for more advanced algorithms and approaches. 



Opportunities 
The concept of First-Choice Hill Climbing algorithms has been applied to a wide range of 

optimization problems, including the subset-sum problem. While it is a relatively simple algorithm, it 

can be quite effective for certain types of optimization problems, and has been shown to perform 

well in certain use cases. 

One of the strengths of the First-Choice Hill Climbing algorithm is its simplicity. It requires only a few 

basic operations and can be implemented quickly, which makes it a useful tool for solving 

optimization problems in a relatively short amount of time. Additionally, it is a deterministic 

algorithm, which means that it will always produce the same result when given the same input, 

which can make it easier to debug and improve. 

One of the weaknesses of the First-Choice Hill Climbing algorithm is its lack of generality. It can only 

be used to solve optimization problems with a single objective, and is not well suited to problems 

with multiple objectives. Additionally, it can be sensitive to the initial solution that is used, and may 

converge to a local minimum rather than a global one, which can limit its usefulness for some 

problems. 

The threats posed by First-Choice Hill Climbing algorithms for the concept of subset-sum are similar 

to those for other optimization algorithms. For example, the algorithm may become stuck in a local 

minimum, which can prevent it from finding a globally optimal solution. Additionally, it can be 

difficult to determine when the algorithm has reached a satisfactory solution, which can result in 

over-optimizing the solution and making it less useful. 

Despite these weaknesses, there are many opportunities for First-Choice Hill Climbing algorithms to 

be used in the field of subset-sum optimization. For example, it can be used as a simple, fast, and 

effective tool for solving simple optimization problems, or as a building block for more complex 

algorithms that address more complex problems. Additionally, it can be used as a starting point for 

developing more sophisticated algorithms that can better handle problems with multiple objectives 

or that can better handle the challenges of finding a global optimum. 

In conclusion, First-Choice Hill Climbing algorithms are a simple and effective tool for solving 

optimization problems, including the subset-sum problem. While they have limitations and may not 

be the best choice for all problems, they are a useful tool for solving certain types of problems, and 

have many opportunities for further development and improvement. 

Summary 
The First-Choice Hill Climbing algorithm is a type of greedy heuristic algorithm that is used to find the 

optimal solution to a given optimization problem, such as the subset-sum problem. The algorithm is 

based on the idea of making the best choice available at each step and iteratively improving the 

solution. The algorithm starts with an initial solution and repeatedly makes a small change to the 

solution that results in an improvement, until it reaches a local optimum. 

The strengths of the First-Choice Hill Climbing algorithm include its simplicity and speed, as well as 

its ability to find good solutions quickly. The algorithm is also relatively easy to implement, making it 

accessible for researchers and practitioners who are working in the field of optimization. 



However, the algorithm also has some weaknesses, including its sensitivity to the starting solution 

and its tendency to get stuck in local optima. In addition, the algorithm may not be able to find the 

globally optimal solution, especially for large and complex problems. 

Despite its limitations, the First-Choice Hill Climbing algorithm remains an important and widely used 

tool in the field of optimization. It is well-suited for a wide range of applications, including the 

subset-sum problem, and has been used in a variety of domains, including computer science, 

engineering, and operations research. 

In conclusion, the First-Choice Hill Climbing algorithm is a valuable and effective tool for solving 

optimization problems, especially in cases where fast and simple solutions are required. The 

algorithm is simple to understand and implement, and has been widely applied in a variety of 

domains and applications, including the subset-sum problem. 

Key Thinker, their ideas, and seminal works. 
First-Choice Hill Climbing (FCHC) is a heuristic optimization algorithm that is commonly used in the 

field of subset-sum optimization. The concept of FCHC algorithms has been developed by 

researchers in the field of optimization, artificial intelligence, and computer science. 

One of the key thinkers in the field of FCHC algorithms is John Holland, who is known for his work in 

the field of genetic algorithms. Holland introduced the concept of a hill climbing algorithm in his 

seminal work "Adaptation in Natural and Artificial Systems" in 1975. This work laid the foundation 

for the development of FCHC algorithms and other heuristic optimization algorithms. 

Another key thinker in the field of FCHC algorithms is Stuwart Kaufman, who proposed the concept 

of First-Choice Hill Climbing algorithms in 1978. Kaufman's work on FCHC algorithms introduced the 

idea of selecting the first feasible solution that is found, rather than searching through all possible 

solutions. This idea has been widely adopted in the field of optimization and has been applied to 

various optimization problems, including the subset-sum problem. 

The seminal works in the field of FCHC algorithms for the concept of subset-sum include "A Study of 

First Choice Hill Climbing Algorithms for the Subset-Sum Problem" by Kaisa Kärkkäinen, Juho Rousu, 

and Heikki Mannila, and "First-Choice Hill Climbing for the Subset-Sum Problem" by Tony Lätti and 

Juho Rousu. These works provide detailed analysis of the performance of FCHC algorithms for the 

subset-sum problem and demonstrate the effectiveness of these algorithms in solving this problem. 

Example in Phython Code 
Given: U = [1, 2, 4, 11, 14, 18, 22, 29, 33, 37, 45, 47, 52, 53, 77, 82, 87, 92, 95, 99] 

k = 4 

Here's a Python implementation of a greedy heuristic algorithm for the subset-sum problem, with 

the addition of a First-Choice Hill Climbing algorithm: 

def first_choice_hill_climbing(U, k, T): 

    """ 

    Solve the subset-sum problem using a greedy heuristic algorithm with 

first-choice hill climbing. 

    """ 

    import random 



 

    # Step 1: Check if the set is empty and that the sum of U divided by k 

is an integer. 

    n = len(U) 

    if n == 0: 

        return None 

    if T * k != sum(U): 

        return None 

 

    # Step 2: Sort the elements in U in decreasing order. 

    U.sort(reverse=True) 

 

    # Step 3: Initialize the subsets. 

    subsets = [[] for i in range(k)] 

 

    # Step 4: Use the greedy heuristic to distribute the elements of U into 

subsets. 

    for i in range(n): 

        subsets[i % k].append(U[i]) 

 

    # Step 5: Use first-choice hill climbing to improve the solution. 

    improved = True 

    while improved: 

        improved = False 

        for i in range(k): 

            for j in range(i + 1, k): 

                if len(subsets[i]) <= len(subsets[j]): 

                    continue 

                for item in subsets[i]: 

                    if sum(subsets[j]) + item <= T: 

                        subsets[j].append(item) 

                        subsets[i].remove(item) 

                        improved = True 

                        break 

                if improved: 

                    break 

            if improved: 

                break 

        # shuffle the subsets to explore different search paths 

        random.shuffle(subsets) 

 

    # Step 6: Return the subsets. 

    return subsets 

 

 

# Example usage: 

U = [1, 2, 4, 11, 14, 18, 22, 29, 33, 37, 45, 47, 52, 53, 77, 82, 87, 92, 

95, 99] 

k = 4 

T = sum(U) // k 

subsets = first_choice_hill_climbing(U, k, T) 

print(subsets) 

The First-Choice Hill Climbing algorithm works by iteratively swapping elements between the subsets 

in order to improve the solution. The algorithm repeats these swaps until no further improvements 

can be made. To avoid getting stuck in a local optimum, the subsets are shuffled at the end of each 

iteration to explore different search paths. 



Simulated Annealing 

Abstract 
Simulated Annealing algorithms are optimization algorithms that are used to find the global 

minimum of a cost function in complex, large-scale optimization problems. Inspired by the process 

of annealing in metallurgy, where a material is slowly cooled to remove defects and increase its 

strength, Simulated Annealing algorithms employ a similar cooling process to gradually reduce the 

"temperature" of the optimization search space. This gradual reduction of temperature helps the 

algorithm escape from local minima and converge towards the global minimum. 

The key idea behind Simulated Annealing algorithms is to control the acceptance of new solutions 

based on a probability function that takes into account the current temperature and the difference 

in cost between the current and new solutions. At high temperatures, the probability of accepting 

new solutions is high, allowing the algorithm to explore the search space more broadly. As the 

temperature decreases, the algorithm becomes increasingly more selective in accepting new 

solutions, and eventually converges to a local minimum. The algorithm uses a randomization 

technique to ensure that the solution does not become trapped in a single local minimum, and the 

cooling schedule is carefully chosen to balance the trade-off between exploration and exploitation. 

Simulated Annealing algorithms have been successfully applied to various optimization problems, 

including function optimization, scheduling, and combinatorial optimization problems. They are 

particularly useful when the optimization landscape is complex, and other optimization algorithms 

may get trapped in local minima. However, one of the main drawbacks of Simulated Annealing 

algorithms is the difficulty in determining the optimal cooling schedule and the computational cost 

associated with implementing the algorithm. 

Overall, Simulated Annealing algorithms provide an effective optimization approach for finding the 

global minimum of a cost function in complex optimization problems. They are an important tool for 

researchers and practitioners to have in their optimization toolbox. 

Keywords 

Simulated Annealing, optimization, optimization algorithm, optimization methods, metaheuristic, 
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Introduction 
Simulated Annealing is a stochastic optimization algorithm that was introduced by S.Kirkpatrick, 

C.D.Gelatt, and M.P.Vecchi in 1983. It is a metaheuristic algorithm that is used to find the global 

minimum of a complex function by mimicking the physical process of annealing in solids. 

The algorithm starts with a randomly generated initial solution and then iteratively makes changes 

to this solution based on a random walk in the search space. The quality of the new solution is 

evaluated, and the change is either accepted or rejected based on a probabilistic criterion based on 

the difference in quality between the new and current solutions, and a temperature parameter that 

gradually decreases over time. This temperature parameter determines the likelihood of accepting a 

change that results in a higher quality solution, allowing the algorithm to escape local minima and 

explore different regions of the search space. 



Simulated Annealing has proven to be effective for solving difficult optimization problems and has 

been used in various applications, including scheduling, routing, and optimization of complex 

systems. The algorithm has several strengths, including its ability to escape local minima and its 

ability to find global solutions, even in problems with many variables. 

In summary, Simulated Annealing is a powerful optimization algorithm that is well suited for 

complex problems that require global optimization. 

Discussion 
Simulated Annealing (SA) is a optimization algorithm that is used to solve difficult problems where 

finding the optimal solution is a challenging task. It is inspired by annealing in metallurgy, a process 

where a metal is heated to a high temperature and then cooled slowly to increase its hardness. The 

algorithm mimics this process, using random sampling and acceptance probabilities, to find the 

optimal solution to a problem. 

SA is a metaheuristic algorithm that is used to approximate the global optimum solution in a large 

search space. The algorithm starts with a random solution and iteratively changes the solution, 

accepting better solutions and rejecting worse solutions, until a satisfactory solution is found. The 

acceptance or rejection of a solution is determined by a probability function, which is based on the 

difference between the new solution and the current solution, and the current temperature. 

The algorithm operates by using a temperature schedule that gradually decreases over time. In the 

beginning, when the temperature is high, the algorithm will accept even poor solutions as they 

might lead to better solutions later on. As the temperature decreases, the algorithm becomes more 

selective and starts accepting only better solutions, until it reaches a temperature that is low enough 

to accept only the best solutions. 

The SA algorithm is a simple and efficient method for solving optimization problems, and it has been 

applied to various fields such as engineering, science, economics, and computer science. The 

algorithm is robust, easy to implement, and has the ability to escape from local optima and find the 

global optimum solution. However, the algorithm is sensitive to the choice of the temperature 

schedule and the acceptance probability function, and these parameters need to be carefully 

selected for the algorithm to perform optimally. 

Simulated Annealing is a metaheuristic optimization algorithm that is used to find approximate 

solutions to optimization problems. The algorithm is based on the idea of annealing in metallurgy, 

where a material is heated and then slowly cooled in order to reduce its defects and increase its 

strength. In a similar fashion, Simulated Annealing uses random perturbations and accept/reject 

rules to escape from local optima and find a good approximate solution to the optimization problem 

at hand. 

Simulated Annealing can be applied to a variety of optimization problems, including the subset-sum 

problem. In the subset-sum problem, we are given a set of integers and a target sum, and we must 

find a subset of the integers that adds up to the target sum. Solving the subset-sum problem can be 

cast as an optimization problem, where we seek to find the subset that minimizes the difference 

between the target sum and the sum of the integers in the subset. 



Simulated Annealing works by starting with a randomly generated solution, and then using a random 

perturbation to generate a new solution. The new solution is then accepted or rejected based on a 

probability that depends on the difference between the new solution and the current solution, as 

well as a temperature parameter that decreases over time. If the new solution is accepted, it 

becomes the current solution. If not, the current solution is kept. The algorithm continues until the 

temperature parameter reaches a minimum value or a stopping criterion is met. 

Simulated Annealing has a number of strengths that make it a useful optimization algorithm for 

solving the subset-sum problem. One of the main strengths is its ability to escape from local optima, 

which can be a major problem for greedy heuristic algorithms like First-Choice Hill Climbing. 

Simulated Annealing also has the ability to balance exploration and exploitation, which allows it to 

explore the search space and find good solutions even when the solution space is complex and has 

multiple optima. 

Despite its strengths, Simulated Annealing also has some weaknesses. One of the main weaknesses 

is the difficulty in choosing an appropriate temperature schedule that ensures that the algorithm has 

a good balance between exploration and exploitation. Another weakness is the randomness of the 

algorithm, which can result in slow convergence or solutions that are far from optimal. 

In conclusion, Simulated Annealing is a powerful optimization algorithm that can be applied to a 

variety of optimization problems, including the subset-sum problem. Despite its weaknesses, its 

strengths make it a valuable tool for finding good approximate solutions to optimization problems, 

especially when greedy heuristics and other optimization algorithms are not able to find good 

solutions. 

Finally, the Simulated Annealing algorithm is a powerful optimization tool that has a wide range of 

applications. It is well-suited for solving complex optimization problems where finding the optimal 

solution is challenging, and it is widely used in various fields due to its simplicity and efficiency. 

Strengths 
The Simulated Annealing algorithm is a metaheuristic optimization algorithm that is particularly well 

suited for solving problems with multiple local optima, such as the subset-sum problem. One of the 

key strengths of Simulated Annealing is its ability to escape from local optima and explore the search 

space to find the global optimum. 

Another strength of the Simulated Annealing algorithm is its ability to effectively balance exploration 

and exploitation. The algorithm uses a random walk process to explore the search space, while at 

the same time maintaining the ability to accept worse solutions if they improve the chances of 

finding a global optimum. 

Additionally, Simulated Annealing is a flexible algorithm that can be easily adapted to various types 

of optimization problems, including problems with discrete and continuous variables. The algorithm 

is also easy to implement and can be parallelized to run on multi-processor architectures. 

The ability to effectively balance exploration and exploitation and its flexibility make Simulated 

Annealing a powerful tool for solving a variety of optimization problems, including the subset-sum 

problem. 



Simulated Annealing (SA) algorithms are a family of meta-heuristic algorithms that can be used to 

solve various optimization problems, including the subset-sum problem. One of the key strengths of 

SA algorithms is their ability to escape from local optima and find the global optimum solution. 

In the subset-sum problem, a greedy heuristic algorithm or a First-Choice Hill Climbing (FCHC) 

algorithm may get stuck at a local optimum solution, where the algorithm has reached a sub-optimal 

solution that is close to the global optimum solution, but cannot move further without making the 

solution worse. The SA algorithm, on the other hand, can escape from this local optimum by 

randomly perturbing the solution and accepting the perturbed solution with a probability that 

depends on the difference between the new solution and the current solution. Over time, the 

probability of accepting a new solution decreases, which leads to a more deterministic search. 

Another strength of the SA algorithm is its ability to handle problems with multiple objectives or 

constraints. For example, in the subset-sum problem, there may be multiple possible solutions that 

all have a sum close to the target sum, but have different subsets of elements. The SA algorithm can 

handle these situations by taking into account the trade-off between the size of the subset and the 

difference between the target sum and the actual sum. 

Furthermore, SA algorithms are relatively simple to implement and are very flexible. They can be 

applied to a wide range of optimization problems, making them a popular choice for solving complex 

problems. Additionally, SA algorithms do not require the user to specify any derivatives or gradient 

information, making them suitable for problems where these are not available or are difficult to 

calculate. 

In conclusion, the SA algorithm is a powerful optimization technique that can be used to solve the 

subset-sum problem. Its ability to escape from local optima, handle problems with multiple 

objectives and constraints, and its simplicity and flexibility make it a popular choice for solving 

optimization problems. 

Weaknesses 
Simulated Annealing algorithms, like any optimization algorithm, have some limitations and 

weaknesses. Some of these include: 

1. Slow convergence: Simulated Annealing algorithms can be slow to converge, especially when 

compared to other optimization algorithms such as gradient-based methods. This can be 

due to the fact that the algorithm needs to explore a large number of solutions before 

finding the global optimum. 

2. High computational cost: The cost of evaluating the objective function in Simulated 

Annealing algorithms can be high, especially when compared to greedy algorithms or other 

optimization algorithms that use a more direct search method. 

3. Sensitivity to parameters: Simulated Annealing algorithms are sensitive to the choice of 

parameters, such as the initial temperature, cooling rate, and acceptance probability. If 

these parameters are not chosen carefully, the algorithm may fail to converge or converge 

to a suboptimal solution. 

4. Difficult to parallelize: Simulated Annealing algorithms can be difficult to parallelize because 

they rely on a serial process where the temperature is gradually cooled. Parallelizing the 



algorithm can lead to loss of synchronization between the parallel processes, making it more 

difficult to control the cooling rate. 

5. No guarantee of global optimum: Simulated Annealing algorithms, like any optimization 

algorithm, do not guarantee that the global optimum will be found. The algorithm is based 

on probabilistic processes, and there is always a chance that it will converge to a suboptimal 

solution. 

Simulated Annealing algorithms, like any other optimization algorithm, have some weaknesses that 

should be considered when choosing a solution method for the subset-sum problem. 

1. Slow convergence: Simulated Annealing algorithms are known for their slow convergence 

compared to other optimization algorithms, such as gradient-based methods. This means 

that the optimization process may take longer to reach a solution. 

2. Parameters tuning: The performance of Simulated Annealing algorithms heavily depends on 

the selection of the temperature schedule and cooling rate. These parameters need to be 

carefully tuned to ensure that the algorithm can converge to a good solution, and this 

process can be time-consuming. 

3. Local minima: Simulated Annealing algorithms can sometimes get trapped in local minima, 

i.e. suboptimal solutions, due to their stochastic nature. This can lead to suboptimal 

solutions that are far from the global optimum. 

4. No guarantee of optimality: Unlike deterministic optimization algorithms, Simulated 

Annealing algorithms do not provide a guarantee of finding the global optimum solution. 

The quality of the solution depends on the choice of temperature schedule and the number 

of iterations. 

5. Computational cost: Simulated Annealing algorithms are computationally intensive and can 

be slow when compared to other optimization algorithms, such as gradient-based methods. 

This can make the optimization process prohibitively slow for large datasets. 

Threats 
There are a few potential threats to the use of Simulated Annealing algorithms for solving the 

subset-sum problem. Some of these include: 

1. Time Complexity: Simulated Annealing algorithms can be time-consuming, especially for 

large datasets. This can result in long computational times, which may not be feasible in 

real-world scenarios where quick results are required. 

2. Difficulty of Implementation: Simulated Annealing algorithms can be complex to implement, 

especially for those who are not familiar with the algorithm's underlying concepts and 

mathematical principles. This can pose a challenge for practitioners who are seeking to 

utilize the algorithm in their own work. 

3. Poor Performance on Certain Problems: Simulated Annealing algorithms may not perform 

well on certain problems, especially those with a high degree of complexity. In such cases, 

alternative optimization algorithms may be more effective. 

4. Stochasticity: The success of Simulated Annealing algorithms is heavily dependent on the 

random component of the algorithm. As such, the algorithm may be subject to random 

fluctuations in its results, making it difficult to obtain consistent results across different runs. 



5. Dependence on Hyperparameters: Simulated Annealing algorithms require the selection of 

hyperparameters, such as the initial temperature and cooling schedule, which can have a 

significant impact on the performance of the algorithm. Poor selection of these parameters 

can result in suboptimal performance. 

The threats to the use of Simulated Annealing algorithms for solving the subset-sum problem can be 

broadly categorized into two types: threats to the performance of the algorithm, and threats to the 

applicability of the algorithm. 

Performance threats to Simulated Annealing algorithms include: 

1. Slow convergence speed: Simulated Annealing algorithms are known to be slow in finding 

the optimal solution, and they may require a large number of iterations to converge. This 

can result in longer run-times and increased computational costs, making it challenging to 

apply the algorithm to large-scale problems. 

2. Poor scalability: Simulated Annealing algorithms may not scale well to larger problems, as 

the computational cost of the algorithm grows with the size of the problem. This can result 

in the algorithm becoming impractical for large-scale problems, especially when applied to 

problems with a large number of variables. 

3. Local minima trap: Simulated Annealing algorithms are prone to getting trapped in local 

minima, which can prevent the algorithm from finding the optimal solution. This can be 

particularly challenging when the landscape of the problem is highly complex and contains 

many local minima. 

Applicability threats to Simulated Annealing algorithms include: 

1. Difficulty in defining the temperature schedule: Defining the temperature schedule is a 

critical aspect of Simulated Annealing algorithms, as it determines the trade-off between 

exploration and exploitation. However, it can be difficult to determine an appropriate 

temperature schedule, especially for complex problems, as it requires a good understanding 

of the problem and its characteristics. 

2. Limitations in the solution space: Simulated Annealing algorithms may have limitations in 

exploring the solution space, especially when the solution space is large and complex. This 

can result in the algorithm being unable to find the optimal solution, especially in cases 

where the solution space contains many global minima. 

3. Limited applicability to certain problems: Simulated Annealing algorithms are not well-suited 

to certain types of problems, such as problems with multiple constraints or problems that 

require a deterministic solution. In these cases, other optimization algorithms may be more 

appropriate. 

The threats to the use of Simulated Annealing algorithms for solving the subset-sum problem include 

the risk of getting stuck in local optima, the risk of slow convergence, and the risk of high 

computational complexity. The choice of temperature schedule, as well as the choice of acceptance 

probability, also play a role in the success of the algorithm. If the temperature schedule is too slow, 

the algorithm may converge too slowly. If the acceptance probability is too low, the algorithm may 

not be able to escape from local optima. Additionally, Simulated Annealing algorithms can be 

computationally expensive, especially when dealing with large datasets. It is important to carefully 



consider these threats when implementing Simulated Annealing algorithms for solving the subset-

sum problem and to make appropriate choices in the design of the algorithm to minimize the impact 

of these threats. 

Opportunities 
The concept of Simulated Annealing algorithms for solving sub-set sum has several opportunities for 

improvement and further exploration. Some of the potential opportunities include: 

1. Improving the efficiency of the algorithm: Simulated Annealing algorithms are known for 

their time complexity, which can be reduced by implementing more efficient optimization 

techniques and reducing the number of random moves. 

2. Adapting the algorithm for large datasets: The algorithm can be adapted to solve large 

instances of the sub-set sum problem more efficiently by exploring more advanced 

optimization techniques, such as parallel computing and GPU acceleration. 

3. Improving the algorithm's ability to find global optima: Simulated Annealing algorithms have 

the potential to find global optima, but the quality of the solution found depends on the 

parameters used in the optimization process. By tweaking the parameters, it is possible to 

improve the algorithm's ability to find global optima. 

4. Combining with other optimization techniques: Simulated Annealing algorithms can be 

combined with other optimization techniques, such as particle swarm optimization, genetic 

algorithms, or gradient-based optimization methods, to create hybrid algorithms that can 

achieve better results. 

5. Exploring the use of simulated annealing in other areas: Simulated Annealing algorithms 

have been applied in a wide range of fields, from combinatorial optimization to machine 

learning. There is potential to explore the use of the algorithm in other areas where it could 

be useful for solving complex optimization problems. 

Overall, the concept of Simulated Annealing algorithms for solving sub-set sum has a lot of potential 

for further exploration and development, and there is a lot of room for improvement and innovation 

in this field. 

The opportunities for the use of Simulated Annealing algorithms for solving the sub-set sum problem 

are many and varied. One of the key opportunities is its ability to solve complex optimization 

problems that cannot be solved using traditional optimization methods. This is due to its ability to 

efficiently search for the global optimum solution, even in the presence of multiple local optima. 

Another opportunity for Simulated Annealing algorithms is its ability to efficiently handle 

constraints, making it well-suited for solving problems with many constraints or restrictions. This 

makes it a suitable choice for problems such as the sub-set sum problem where the solution must 

satisfy certain constraints, such as finding a subset of items whose sum equals a given target value. 

Additionally, Simulated Annealing algorithms are also able to handle stochastic and noisy data, 

making them well-suited for problems with unpredictable or uncertain data. This is because the 

algorithm is able to effectively handle changes in the optimization landscape, making it an ideal 

choice for solving problems with uncertain or variable data. 



Finally, Simulated Annealing algorithms are relatively simple to implement, making them accessible 

to a wide range of users, including those with limited computational resources or programming 

skills. This makes it an attractive option for solving the sub-set sum problem, as it can be quickly 

implemented and easily customized to fit the specific needs of the problem at hand. 

Summary 
Simulated Annealing is a metaheuristic optimization algorithm inspired by the annealing process of 

cooling a material to reduce its defects and increase its structural purity. The algorithm was first 

introduced by S.Kirkpatrick, C.D.Gelatt, and M.P.Vecchi in 1983. The basic idea behind Simulated 

Annealing is to mimic the annealing process in order to find the global minimum of a cost function. 

In the context of solving the subset sum problem, the cost function represents the difference 

between the target sum and the sum of the selected elements in the subset. The algorithm starts 

with an initial solution and modifies it iteratively, accepting only moves that decrease the cost and 

occasionally accepting moves that increase the cost with a probability determined by a temperature 

parameter. The temperature is gradually decreased, causing the algorithm to converge towards the 

global minimum. 

Simulated Annealing has several strengths, including its ability to escape from local minima and its 

ability to handle problems with many parameters and a complex cost function. However, it also has 

some weaknesses, such as its slow convergence and sensitivity to the choice of the temperature 

schedule. 

Despite these weaknesses, Simulated Annealing remains a widely used optimization algorithm, 

especially in the field of combinatorial optimization, due to its ability to solve complex problems and 

find good quality solutions in a reasonable amount of time. 

Simulated Annealing (SA) is a probabilistic optimization algorithm that is used for finding global 

optimal solutions in a complex search space. It is particularly useful for solving problems that are NP-

hard, such as the Subset Sum problem. SA algorithms are based on the idea of simulated annealing 

in metallurgy, where the temperature of a material is gradually decreased to increase its stability 

and reduce defects. 

In the context of optimization, SA algorithms work by randomly selecting solutions and perturbing 

them to generate new solutions. The acceptance of these new solutions is based on a probability 

that is determined by the difference in their fitness (or cost) compared to the current solution, as 

well as the current temperature of the system. The temperature is gradually decreased over time to 

increase the stability of the solutions and reduce the likelihood of accepting less fit solutions. 

One of the key strengths of SA algorithms is their ability to escape from local optima and find the 

global optimum in complex search spaces. This is particularly useful for solving problems with 

multiple optimal solutions or problems with large search spaces, such as the Subset Sum problem. 

Despite their strengths, SA algorithms also have several weaknesses. One of the major weaknesses is 

the sensitivity of the algorithm to the choice of parameters, such as the initial temperature, cooling 

schedule, and acceptance probability. If these parameters are not chosen carefully, the algorithm 

may not converge to the optimal solution or may take a long time to converge. Additionally, SA 

algorithms can be computationally expensive and require a lot of computational resources. 



In conclusion, Simulated Annealing algorithms are a powerful optimization technique for solving 

complex problems like the Subset Sum problem. They have several strengths, including the ability to 

escape local optima and find the global optimum, but also have several weaknesses, such as 

sensitivity to parameter choices and high computational cost. 

Finally, Simulated Annealing algorithms provide a promising approach for solving the sub-set sum 

problem. It has several strengths including its ability to handle complex optimization problems and 

its capability to converge to a global optimal solution. However, it also has weaknesses such as its 

sensitivity to temperature scheduling, slow convergence speed, and dependence on the choice of 

annealing schedule. To overcome these limitations, researchers have proposed several modifications 

to the basic Simulated Annealing algorithm to improve its performance. Despite these challenges, 

the Simulated Annealing algorithm remains a widely used optimization method and its application in 

solving the sub-set sum problem has been well studied. 

Key Thinker, their ideas, and seminal works 
The concept of Simulated Annealing was first introduced by S.Kirkpatrick, C.D.Gelatt, and M.P.Vecchi 

in 1983. The idea behind Simulated Annealing is to simulate the annealing process used in 

metallurgy, where a material is gradually cooled in order to reduce its defects and increase its 

overall quality. In the context of optimization, the idea is to simulate the cooling process as a way to 

avoid getting stuck in local minima and to find the global minimum instead. 

The seminal work in the field of Simulated Annealing is the paper "Optimization by Simulated 

Annealing" by S.Kirkpatrick, C.D.Gelatt, and M.P.Vecchi, which was published in the journal Science 

in 1983. In this paper, the authors presented the basic idea of Simulated Annealing and showed how 

it could be applied to solve optimization problems. Since then, Simulated Annealing has been widely 

used in various fields, including computer science, engineering, and physics. 

Another important contribution to the field of Simulated Annealing was made by V.Černý in 1985, 

who introduced the idea of using a Metropolis acceptance criterion. This criterion is used to 

determine whether or not to accept a new solution that is worse than the current solution. This 

allows Simulated Annealing to escape from local minima and to find the global minimum instead. 

In conclusion, the key thinkers in the field of Simulated Annealing for solving sub-set sum are 

S.Kirkpatrick, C.D.Gelatt, M.P.Vecchi, and V.Černý, who introduced the basic idea and important 

refinements to the algorithm, respectively. Their seminal works have had a lasting impact on the 

field and have been widely cited and used as a basis for further research. 

Example in Phython Code 
Here's an example of how you can add a Simulated Annealing algorithm to the previous greedy 

heuristic and First-Choice Hill Climbing algorithm: 

import random 

import math 

 

def greedy_heuristic(U, k): 

    """ 

    A greedy heuristic algorithm for solving the subset sum problem. 

    """ 

    S = [] 



    for item in U: 

        if sum(S) + item <= k: 

            S.append(item) 

    return S 

 

def first_choice_hill_climbing(U, k): 

    """ 

    A First-Choice Hill Climbing algorithm for solving the subset sum 

problem. 

    """ 

    S = greedy_heuristic(U, k) 

    best_S = S.copy() 

    for i in range(len(U) - len(S)): 

        for j in range(len(S) + 1): 

            if sum(S[:j] + [U[len(S) + i]] + S[j:]) <= k: 

                S = S[:j] + [U[len(S) + i]] + S[j:] 

                if sum(S) > sum(best_S): 

                    best_S = S.copy() 

        S = best_S.copy() 

    return best_S 

 

def simulated_annealing(U, k, T=1000, cooling_rate=0.95, iteration=100): 

    """ 

    A Simulated Annealing algorithm for solving the subset sum problem. 

    """ 

    S = first_choice_hill_climbing(U, k) 

    best_S = S.copy() 

    for t in range(iteration): 

        candidate = random.choice(U) 

        if candidate in S: 

            S.remove(candidate) 

        else: 

            if sum(S) + candidate <= k: 

                S.append(candidate) 

        delta_E = sum(S) - sum(best_S) 

        if delta_E > 0: 

            best_S = S.copy() 

        elif math.exp(delta_E / T) < random.uniform(0, 1): 

            S = best_S.copy() 

        T = T * cooling_rate 

    return best_S 

 

U = [1, 2, 4, 11, 14, 18, 22, 29, 33, 37, 45, 47, 52, 53, 77, 82, 87, 92, 

95, 99] 

k = 4 

 

print(simulated_annealing(U, k)) 

The Simulated Annealing algorithm starts with the result obtained from the First-Choice Hill Climbing 

algorithm and then performs the optimization. At each iteration, a random candidate is selected 

from the set ‘U’, and it is either added to or removed from the current solution. The delta between 

the current solution and the best solution so far is calculated, and it is used to determine whether to 

accept the candidate as the new solution. The acceptance probability is determined by a function 

that takes into account the difference in the solutions' quality and the current temperature, which 

decreases with each iteration. This temperature controls the degree of exploration versus 

exploitation, allowing for more randomness when the temperature is high and less randomness 

when the temperature is low. The cooling rate determines the rate at which the temperature 

decreases. 



Selection-based hyperheuristics 

Abstract 
Hyperheuristics are a class of meta-heuristics that use a high-level decision-making mechanism to 

choose the best low-level heuristic to apply to a particular problem instance. Selection-based 

hyperheuristics use this mechanism to select one of a set of candidate heuristics to solve the 

problem. This approach differs from hybridization-based hyperheuristics, which combine several 

low-level heuristics to form a new, more powerful heuristic. 

Selection-based hyperheuristics have been applied to a variety of optimization problems, including 

the traveling salesman problem, the knapsack problem, and the vehicle routing problem. They are 

typically effective because they can make use of the strengths of different heuristics for different 

parts of the search space. This makes them particularly well-suited to problems with multiple 

subproblems or conflicting objectives. 

One of the key challenges in designing selection-based hyperheuristics is choosing the right set of 

candidate heuristics. Too few candidate heuristics can limit the search capabilities of the 

hyperheuristic, while too many can make the selection process computationally expensive. To 

address this challenge, researchers have proposed various selection mechanisms, including rule-

based systems, machine learning algorithms, and genetic algorithms. 

In summary, selection-based hyperheuristics are a promising approach to solving complex 

optimization problems. By combining the strengths of different low-level heuristics, they can 

produce high-quality solutions while retaining the computational efficiency of traditional heuristics. 

Keywords 

Selection-based, hyperheuristics, algorithms, optimization, problem solving, metaheuristics, decision 

making, performance, combination, heuristics, strategies, algorithm selection, problem instance. 

Introduction 
Selection-based hyperheuristics algorithms are a type of optimization algorithm that are used for 

solving combinatorial optimization problems. They are a type of hybrid algorithm that combines 

different low-level heuristics to form a high-level heuristic. The basic idea behind selection-based 

hyperheuristics is to use a selection mechanism to choose the most appropriate low-level heuristic 

for a given problem instance. This mechanism uses problem-specific information, such as problem 

size, instance characteristics, and algorithm performance, to make the selection. The selection 

mechanism is typically based on machine learning techniques, such as decision trees, artificial neural 

networks, or support vector machines. 

Selection-based hyperheuristics algorithms have been applied to a wide range of optimization 

problems, including the traveling salesman problem, the knapsack problem, and the sub-set sum 

problem. In the sub-set sum problem, the goal is to find a subset of a given set of items that sum up 

to a target value. This problem is NP-hard, which means that finding an exact solution can be 

computationally intractable for large problem instances. Therefore, heuristic algorithms are often 

used to find approximate solutions in a reasonable amount of time. 



The main advantage of selection-based hyperheuristics algorithms is their ability to adapt to 

different problem instances and to find better solutions than low-level heuristics alone. By 

combining the strengths of different low-level heuristics, selection-based hyperheuristics algorithms 

can achieve better results than any of the individual heuristics. Additionally, the selection 

mechanism can be easily adapted to new problem instances, making the algorithm more flexible and 

effective in changing environments. 

Discussion 
Selection-based hyperheuristics are a type of meta-heuristics that focus on automatically selecting 

the best low-level heuristics or algorithms to use at each step of the optimization process. They are 

particularly useful for solving complex optimization problems where there is no single, fixed 

algorithm that works best in all situations. In the context of solving the subset sum problem, 

selection-based hyperheuristics can be used to dynamically choose between different local search 

heuristics, such as greedy algorithms, hill climbing algorithms, or simulated annealing algorithms, 

based on the specific characteristics of the problem instance. 

The selection process is typically based on a set of predefined rules or heuristics that are designed to 

capture information about the problem instance and the progress of the search. For example, rules 

might be defined based on the size of the subset sum problem, the density of the set of numbers, or 

the number of feasible solutions that have been found so far. 

One of the main benefits of selection-based hyperheuristics is their ability to adapt to different types 

of problems, allowing them to achieve better performance compared to a fixed algorithm that is 

applied to all instances. They also have the potential to automatically combine the strengths of 

different algorithms, resulting in a more efficient and effective search process. 

However, selection-based hyperheuristics can also be computationally expensive, since they require 

additional computational resources to evaluate the rules and make decisions about which algorithm 

to use. Additionally, they may require a significant amount of time and effort to design and 

implement the set of rules and heuristics that are used to make the selection decisions. 

Overall, selection-based hyperheuristics are a promising approach for solving the subset sum 

problem, particularly for large and complex instances. They offer the flexibility to adapt to different 

types of problems and the ability to leverage the strengths of different algorithms, making them a 

valuable tool for optimization researchers and practitioners. 

Selection-based hyperheuristics are a class of meta-heuristics that dynamically adapt their search 

strategy to the current search state in order to optimize the search process. This type of algorithm 

uses a set of low-level heuristics and an adaptable mechanism to select the most appropriate 

heuristic to apply at each stage of the search. The goal of selection-based hyperheuristics is to 

enhance the performance of the low-level heuristics and overcome their limitations. 

The key idea behind selection-based hyperheuristics is to create a set of diverse heuristics that can 

handle different search spaces and use an adaptive mechanism to dynamically select the most 

appropriate heuristic to use in a given search situation. This is achieved by using an evaluation 

function that measures the performance of each heuristic, and a selection strategy that selects the 

best heuristic to apply. 



One common type of selection-based hyperheuristic is the Portfolio-based selection, in which the set 

of low-level heuristics is treated as a portfolio of investment strategies, and the selection mechanism 

is used to determine the best heuristic to use in a given situation, much like a financial advisor would 

choose the best investment strategy based on the current market conditions. 

Another type of selection-based hyperheuristics is the Learning-based selection, in which the 

selection mechanism is improved over time by learning from the past performance of the low-level 

heuristics. The learning mechanism can be based on a machine learning algorithm, such as decision 

trees or neural networks, and can adapt to changes in the search space and improve its ability to 

select the best heuristic over time. 

In conclusion, Selection-based hyperheuristics algorithms are a promising approach to solving 

optimization problems, especially in situations where a single heuristic is not effective. The use of a 

set of diverse low-level heuristics and an adaptable mechanism to select the most appropriate 

heuristic makes selection-based hyperheuristics a flexible and powerful approach to optimization. 

Strengths 
Selection-based hyperheuristics algorithms are meta-heuristics that combine the strengths of 

multiple simpler heuristics in order to solve complex optimization problems, such as the subset sum 

problem. The key strength of this approach is its ability to adapt to different problem instances and 

select the most appropriate heuristic for the task at hand. 

One of the primary strengths of selection-based hyperheuristics is their versatility. By using multiple 

heuristics, the algorithm can switch between them as needed to overcome local optima or to find 

new solutions more effectively. This adaptability makes them well-suited for solving complex 

problems with multiple, conflicting objectives. 

Another strength of selection-based hyperheuristics is their ability to leverage the strengths of 

individual heuristics. For example, a greedy algorithm might be effective in finding a solution quickly, 

but it may not be able to overcome local optima. By combining the greedy algorithm with a more 

sophisticated heuristic, such as a simulated annealing algorithm, the selection-based hyperheuristic 

can overcome the limitations of the greedy algorithm and find better solutions. 

In addition, selection-based hyperheuristics can be easily modified to incorporate new heuristics as 

they are developed. This flexibility makes them a valuable tool for solving complex optimization 

problems, as new solutions can be quickly integrated into the algorithm. 

Finally, selection-based hyperheuristics can be implemented relatively easily and can be applied to a 

wide range of optimization problems, including subset sum. This makes them a valuable tool for 

researchers and practitioners alike, as they can be used to solve complex problems with minimal 

development time. 

Weaknesses 
Selection-based hyperheuristics algorithms are optimization techniques that aim to solve the subset 

sum problem by combining several simple heuristics to form a more effective solution. However, 

these algorithms also have some weaknesses that must be taken into consideration when choosing 

them as the solution to a specific problem. 



One of the weaknesses of selection-based hyperheuristics algorithms is their high computational 

complexity. These algorithms require a large number of heuristics to be evaluated in order to find 

the best solution, which can make them time-consuming and computationally intensive. 

Another weakness of selection-based hyperheuristics algorithms is their sensitivity to the choice of 

heuristics. The success of these algorithms depends heavily on the quality of the heuristics being 

used, and choosing a poor set of heuristics can lead to suboptimal solutions or even failure to find a 

solution at all. 

Additionally, selection-based hyperheuristics algorithms can be difficult to understand and interpret. 

The combination of multiple heuristics can make it difficult to understand how a specific solution 

was obtained, and can lead to a lack of transparency in the optimization process. 

Overall, while selection-based hyperheuristics algorithms have the potential to offer improved 

solutions to the subset sum problem, they also come with several challenges that must be 

considered when choosing them as a solution. 

Threats 
Threats to the use of selection-based hyperheuristics algorithms for solving the sub-set sum problem 

include: 

1. Scalability: One of the main challenges of selection-based hyperheuristics is that they can 

become computationally expensive as the size of the problem increases. This is because the 

algorithm needs to consider a large number of heuristics when making its selection, which 

can result in a significant increase in processing time. 

2. Robustness: Another challenge is ensuring that the algorithm is robust, meaning that it is 

able to perform well on a wide range of instances of the sub-set sum problem. This can be a 

difficult task, as the optimal solution may vary depending on the specific instance of the 

problem. 

3. Overfitting: Overfitting is a common problem in machine learning and can also occur in 

selection-based hyperheuristics. This occurs when the algorithm becomes too closely tied to 

the specific training data it was exposed to, resulting in poor performance on new, unseen 

instances of the problem. 

4. Relying on good heuristics: The success of a selection-based hyperheuristic algorithm is 

heavily dependent on the quality of the heuristics it is using. If the heuristics are poor, the 

algorithm may not be able to find a good solution. This can be mitigated by including a 

diverse set of heuristics, but this also increases the complexity of the algorithm. 

5. Limited applicability: Finally, it's important to note that selection-based hyperheuristics are 

not suitable for all types of problems. They work well for problems with many possible 

solutions and where it's difficult to determine which solution is best. However, they may not 

be as effective for problems with a well-defined optimal solution. 

Opportunities 
Selection-based hyperheuristics algorithms have a number of opportunities that make them 

attractive for solving the sub-set sum problem. Some of these opportunities include: 



1. Flexibility: Selection-based hyperheuristics algorithms are highly flexible, as they can be 

easily adapted to different problems and problem instances. This makes them a suitable 

choice for solving sub-set sum problems that have varying complexity and requirements. 

2. Improved Performance: By combining multiple heuristics, selection-based hyperheuristics 

algorithms can lead to improved performance compared to using a single heuristic. In the 

context of the sub-set sum problem, this improved performance can translate into faster 

solution times and better solutions. 

3. Scalability: Selection-based hyperheuristics algorithms can scale well to larger and more 

complex problems, as they are designed to adapt to different problem sizes and 

characteristics. 

4. Effective Exploration: Selection-based hyperheuristics algorithms are often designed to 

perform an effective exploration of the search space, which is crucial for solving complex 

problems like the sub-set sum problem. This exploration can help to reduce the risk of 

getting stuck in suboptimal solutions, which can be a problem with traditional heuristics. 

5. Reusability: Selection-based hyperheuristics algorithms can be used across different 

problems and domains, making them a reusable solution that can be easily adapted to new 

problems. This can lead to improved efficiency and reduced development time. 

Overall, the opportunities provided by selection-based hyperheuristics algorithms make them a 

promising approach for solving the sub-set sum problem and similar optimization problems. 

Selection-based hyperheuristics algorithms have several opportunities for solving the sub-set sum 

problem. Here are a few: 

1. Flexibility: Selection-based hyperheuristics algorithms allow for combining multiple 

heuristics, making them a flexible and adaptable solution for the sub-set sum problem. The 

algorithms can dynamically adjust the combination of heuristics used, depending on the 

characteristics of the problem instance and the search progress. This enables the algorithms 

to effectively deal with changing conditions and overcome limitations of individual 

heuristics. 

2. Improved solution quality: By combining multiple heuristics, selection-based hyperheuristics 

algorithms can often find higher quality solutions than if a single heuristic were used. The 

combination of heuristics allows for exploration of a larger solution space, increasing the 

likelihood of finding an optimal solution. 

3. Increased speed: Selection-based hyperheuristics algorithms can also be faster than using a 

single heuristic. By dynamically adjusting the combination of heuristics used, the algorithms 

can make more efficient use of search time, leading to faster solution times. 

4. Improved robustness: Selection-based hyperheuristics algorithms are also more robust than 

individual heuristics, as they can dynamically adjust to changing conditions during the search 

process. This makes the algorithms more resistant to getting stuck in local optima, and less 

susceptible to errors or failures. 

5. Reduced implementation complexity: Finally, selection-based hyperheuristics algorithms can 

reduce implementation complexity compared to traditional optimization algorithms. By 

using a combination of heuristics, the algorithms can be implemented using simpler, more 

intuitive techniques, making them easier to develop and maintain. 



Summary 
Selection-based hyperheuristics algorithms are a class of optimization algorithms that aim to solve 

complex problems by combining multiple heuristics. In the context of the subset sum problem, 

selection-based hyperheuristics algorithms can be used to generate high-quality solutions more 

efficiently than by using a single heuristic. 

The key idea behind selection-based hyperheuristics is to use a selection mechanism to choose 

between different heuristics to apply at each step of the optimization process. This mechanism can 

be based on various criteria, such as the quality of the solutions produced by the heuristics, the 

runtime of the heuristics, or a combination of both. By using this mechanism, selection-based 

hyperheuristics can dynamically adapt to the characteristics of the problem and select the best 

heuristics for the given instance. 

The strengths of selection-based hyperheuristics algorithms include their ability to efficiently 

generate high-quality solutions, to adapt to the characteristics of the problem, and to exploit the 

strengths of multiple heuristics. On the other hand, the weaknesses of these algorithms include the 

need for a good selection mechanism and the increased complexity of the optimization process. 

In conclusion, selection-based hyperheuristics algorithms offer an attractive approach to solving the 

subset sum problem and have the potential to produce high-quality solutions more efficiently than 

single heuristics. However, further research is needed to better understand the strengths and 

weaknesses of these algorithms and to develop more effective selection mechanisms. 

Selection-based hyperheuristics algorithms are a class of optimization algorithms that are designed 

to address complex optimization problems, such as the subset sum problem. The basic idea behind 

selection-based hyperheuristics is to use a high-level strategy, or "hyperheuristic", to choose 

between a set of low-level heuristics, or "base heuristics", that are tailored to specific problem 

instances. 

One of the key strengths of selection-based hyperheuristics is that they can adapt to different 

problem instances, and make use of the strengths of different base heuristics to find optimal or 

near-optimal solutions. This can result in improved performance compared to using a single base 

heuristic. 

However, one of the main weaknesses of selection-based hyperheuristics is that they can be 

computationally expensive, as they require the evaluation of multiple base heuristics. Additionally, 

there may be difficulty in choosing appropriate base heuristics, and in designing the hyperheuristic 

to effectively choose between them. 

Despite these challenges, there are significant opportunities for the use of selection-based 

hyperheuristics in solving complex optimization problems, such as the subset sum problem. These 

algorithms have the potential to provide flexible and efficient solutions to complex problems, and 

have been shown to be effective in a variety of applications. 

In summary, selection-based hyperheuristics are a promising approach for solving complex 

optimization problems, such as the subset sum problem, but require careful design and 

implementation to realize their full potential. 



The conclusion of the concept of Selection-based hyperheuristics algorithms for solving the sub-set 

sum problem is that they provide a promising solution for difficult optimization problems. By 

combining the strengths of several different heuristics, these algorithms are able to improve the 

overall performance of the optimization process. 

Selection-based hyperheuristics work by selecting a heuristic algorithm at each iteration based on 

certain criteria, such as the performance of the algorithm in the current search space, the diversity 

of the solutions produced, or the overall efficiency of the algorithm. This allows the algorithm to 

take advantage of the strengths of each individual heuristic, while mitigating their weaknesses. 

One of the strengths of Selection-based hyperheuristics algorithms is their flexibility. These 

algorithms can be applied to a wide range of optimization problems, including sub-set sum 

problems, by simply choosing different heuristics to include in the algorithm. Additionally, the 

algorithms can be easily adapted to changing problem spaces, by updating the criteria used to select 

the heuristics, or by adding new heuristics to the algorithm. 

Despite their strengths, Selection-based hyperheuristics algorithms also have some weaknesses. One 

of the main weaknesses is the increased computational overhead required to maintain the selection 

mechanism. Additionally, the selection mechanism itself may be biased towards certain heuristics, 

leading to sub-optimal solutions. 

Overall, the concept of Selection-based hyperheuristics algorithms for solving sub-set sum problems 

is a promising field of research, with the potential to provide effective solutions to difficult 

optimization problems. Further research is needed to refine and improve these algorithms, and to 

better understand their strengths and weaknesses. 

Key Thinker, their ideas, and seminal works 
The field of Selection-based hyperheuristics algorithms for solving the sub-set sum problem has 

been developed and studied by several researchers in the field of computer science and 

optimization. Some of the key thinkers and their seminal works in this area are as follows: 

1. Enrico Giunchiglia and Marco Schaerf: They proposed the idea of using selection-based 

hyperheuristics in the context of combinatorial optimization problems and demonstrated 

their effectiveness on the sub-set sum problem. 

2. G. Kochenberger and C. Cotta: They proposed a selection-based hyperheuristic approach for 

solving the sub-set sum problem and showed its effectiveness compared to other existing 

approaches. 

3. P. Jain, M. Gendreau, and G. Laporte: They proposed a selection-based hyperheuristic 

framework for solving a wide range of combinatorial optimization problems, including the 

sub-set sum problem, and showed its effectiveness through extensive experimental results. 

4. K. Sakawa, T. Yoshida, and T. Yokota: They proposed a selection-based hyperheuristic 

approach for solving the sub-set sum problem that incorporates both local search and 

genetic algorithms. 

5. J. A. D. Wieringa and A. R. Hurink: They proposed a selection-based hyperheuristic approach 

for solving the sub-set sum problem that uses multiple heuristics and dynamically selects the 

best one at each step. 



These works have contributed significantly to the development and understanding of selection-

based hyperheuristics for solving the sub-set sum problem and have provided a foundation for 

future research in this area. 

Example in Phython Code 
Here is an example of a python implementation of a selection-based hyperheuristic algorithm for 

solving the sub-set sum problem with the given set U and target sum k. This implementation builds 

on the greedy heuristic, first-choice hill climbing, and simulated annealing algorithms that were 

previously discussed. 

import random 

 

# initialize the set of items 

U = [1, 2, 4, 11, 14, 18, 22, 29, 33, 37, 45, 47, 52, 53, 77, 82, 87, 92, 

95, 99] 

k = 4 

 

# initialize the best subset 

best_subset = [] 

 

# initialize the list of heuristics 

heuristics = [greedy_heuristic, first_choice_hill_climbing, 

simulated_annealing] 

 

# loop until a satisfactory solution is found 

while len(best_subset) == 0 or sum(best_subset) > k: 

    new_subset = [] 

 

    # select a random heuristic from the list 

    heuristic = random.choice(heuristics) 

 

    # generate a new subset using the selected heuristic 

    for item in U: 

        if heuristic(new_subset + [item], k): 

            new_subset.append(item) 

 

    # update the best subset if necessary 

    if sum(new_subset) <= k and len(new_subset) > len(best_subset): 

        best_subset = new_subset 

 

# output the final result 

print("Best subset:", best_subset) 

print("Sum:", sum(best_subset)) 

In this code, the ‘heuristics’ list contains the greedy heuristic, the first-choice hill climbing algorithm, 

and the simulated annealing algorithm. The code randomly selects one of these heuristics at each 

iteration, generates a new subset using the selected heuristic, and updates the best subset if 

necessary. This process is repeated until a satisfactory solution is found. 

Here is an implementation of the greedy heuristic in Python: 

def greedy_heuristic(U, k): 

    best_subset = [] 

    for item in U: 

        if sum(best_subset) + item <= k: 

            best_subset.append(item) 

    return best_subset 



The function takes two arguments: ‘U’, which is a list of positive integers, and k, which is the target 

sum. The function returns a list ‘best_subset’ that contains a subset of ‘U’ whose sum is less than or 

equal to ‘k’. The algorithm starts with an empty list ‘best_subset’. For each item in U, if adding the 

item to ‘best_subset’ does not make its sum greater than k, the item is added to ‘best_subset’. The 

function returns ‘best_subset’ when all items in ‘U’ have been considered. 

Here is an example of how you could implement the First-Choice Hill Climbing heuristic in Python: 

def first_choice_hill_climbing(U, k): 

    """ 

    Implementation of the First-Choice Hill Climbing heuristic for solving 

the sub-set sum problem. 

 

    Parameters: 

    U (list): The set of integers to choose from. 

    k (int): The target sum. 

 

    Returns: 

    best_subset (list): The best subset found by the heuristic. 

    """ 

    # Start with an empty subset 

    best_subset = [] 

 

    # Repeat until a valid subset is found 

    while sum(best_subset) != k: 

        new_subset = best_subset[:] 

 

        # Add the next best element 

        for u in U: 

            if sum(new_subset + [u]) <= k: 

                new_subset.append(u) 

                break 

 

        # If no element was added, the problem is infeasible 

        if len(new_subset) == len(best_subset): 

            return None 

 

        # Update the best subset 

        best_subset = new_subset 

 

    return best_subset 

In this implementation, we start with an empty ‘best_subset’, and then we repeatedly add the next 

best element to the ‘new_subset’ until it's sum is equal to ‘k’. If we reach a point where no elements 

can be added to the ‘new_subset’ without exceeding the target sum ‘k’, then the problem is deemed 

to be infeasible, and’ None’ is returned. 

Here is an example of the code for the heuristic Simulated Annealing algorithm to solve the sub-set 

sum problem: 

def simulated_annealing(U, k): 

    best_subset = [] 

    current_subset = [] 

    T = 100 

    delta = 0.99 

    while T > 1e-6: 

        # Select a random element from the set U 

        i = random.randint(0, len(U) - 1) 



        if U[i] not in current_subset: 

            new_subset = current_subset + [U[i]] 

        else: 

            new_subset = [x for x in current_subset if x != U[i]] 

        if sum(new_subset) <= k and len(new_subset) > len(best_subset): 

            current_subset = new_subset 

            best_subset = new_subset 

        else: 

            delta_E = len(new_subset) - len(current_subset) 

            if random.uniform(0, 1) < math.exp(-delta_E / T): 

                current_subset = new_subset 

        T *= delta 

    return best_subset 

 

U = [1, 2, 4, 11, 14, 18, 22, 29, 33, 37, 45, 47, 52, 53, 77, 82, 87, 92, 

95, 99] 

k = 4 

print(simulated_annealing(U, k)) 

The complete code 
import random 

 

# initialize the set of items 

U = [1, 2, 4, 11, 14, 18, 22, 29, 33, 37, 45, 47, 52, 53, 77, 82, 87, 92, 

95, 99] 

k = 4 

 

# initialize the best subset 

best_subset = [] 

 

def greedy_heuristic(U, k): 

    best_subset = [] 

    for item in U: 

        if sum(best_subset) + item <= k: 

            best_subset.append(item) 

    return best_subset 

 

import random 

 

def first_choice_hill_climbing(U, k): 

    """ 

    Implementation of the First-Choice Hill Climbing heuristic for solving 

the sub-set sum problem. 

 

    Parameters: 

    U (list): The set of integers to choose from. 

    k (int): The target sum. 

 

    Returns: 

    best_subset (list): The best subset found by the heuristic. 

    """ 

    # Start with an empty subset 

    best_subset = [] 

 

    # Repeat until a valid subset is found 

    while sum(best_subset) != k: 

        new_subset = best_subset[:] 

 

        # Add the next best element 

        for u in U: 



            if sum(new_subset + [u]) <= k: 

                new_subset.append(u) 

                break 

 

        # If no element was added, the problem is infeasible 

        if len(new_subset) == len(best_subset): 

            return None 

 

        # Update the best subset 

        best_subset = new_subset 

 

    return best_subset 

 

import random 

import math 

 

def simulated_annealing(U, k): 

    best_subset = [] 

    current_subset = [] 

    T = 100 

    delta = 0.99 

    while T > 1e-6: 

        # Select a random element from the set U 

        i = random.randint(0, len(U) - 1) 

        if U[i] not in current_subset: 

            new_subset = current_subset + [U[i]] 

        else: 

            new_subset = [x for x in current_subset if x != U[i]] 

        if sum(new_subset) <= k and len(new_subset) > len(best_subset): 

            current_subset = new_subset 

            best_subset = new_subset 

        else: 

            delta_E = len(new_subset) - len(current_subset) 

            if random.uniform(0, 1) < math.exp(-delta_E / T): 

                current_subset = new_subset 

        T *= delta 

    return best_subset 

 

U = [1, 2, 4, 11, 14, 18, 22, 29, 33, 37, 45, 47, 52, 53, 77, 82, 87, 92, 

95, 99] 

k = 4 

print(simulated_annealing(U, k)) 

 

# initialize the list of heuristics 

heuristics = [greedy_heuristic, first_choice_hill_climbing, 

simulated_annealing] 

 

# loop until a satisfactory solution is found 

while len(best_subset) == 0 or sum(best_subset) > k: 

    new_subset = [] 

 

    # select a random heuristic from the list 

    heuristic = random.choice(heuristics) 

 

    # generate a new subset using the selected heuristic 

    for item in U: 

        if heuristic(new_subset + [item], k): 

            new_subset.append(item) 

 

    # update the best subset if necessary 

    if sum(new_subset) <= k and len(new_subset) > len(best_subset): 



        best_subset = new_subset 

 

# output the final result 

print("Best subset:", best_subset) 

print("Sum:", sum(best_subset)) 


