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Abstract 
Particle Swarm Optimization (PSO) is a computational optimization technique that is based on the 

collective behaviour of particles in a swarm. The algorithm was first introduced in 1995 by James 

Kennedy and Russell Eberhart and has since been widely used in a variety of optimization problems. 

PSO algorithms are inspired by the social behaviour of birds and bees, where the particles in the 

swarm work together to find the best solution. 

In PSO algorithms, the swarm consists of a set of particles, each of which represents a potential 

solution to the optimization problem. Each particle has a position and a velocity, and these values 

are updated based on the particle's experience and the experiences of other particles in the swarm. 

The position of each particle is updated according to its current velocity, which is influenced by the 

particle's personal best solution and the global best solution found so far by the swarm. 

One of the key strengths of PSO algorithms is their ability to effectively search large, complex search 

spaces in a relatively short amount of time. Unlike many other optimization techniques, PSO 

algorithms do not require gradient information or a priori knowledge of the objective function. 

Instead, the algorithm relies on the collective exploration of the search space by the swarm of 

particles. 



Another strength of PSO algorithms is their robustness. The algorithm is not prone to getting stuck in 

local optima, and it is relatively insensitive to the choice of initial conditions. The algorithm is also 

relatively easy to implement, making it a popular choice for solving a wide range of optimization 

problems. 

However, PSO algorithms also have some weaknesses. For example, the algorithm can be sensitive 

to the choice of hyperparameters, such as the acceleration coefficients and the inertia weight. 

Additionally, the algorithm can be computationally intensive, especially for large problems, which 

can make it difficult to scale to real-world applications. 

Overall, Particle Swarm Optimization algorithms are a powerful optimization technique that have 

been widely used in a variety of applications. The algorithm's ability to effectively search complex 

search spaces, combined with its robustness and ease of implementation, make it a popular choice 

for solving optimization problems. 
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Introduction 
Particle Swarm Optimization (PSO) is a computational method that belongs to the category of Swarm 

Intelligence algorithms. PSO was first introduced by Kennedy and Eberhart in 1995, and it is a 

population-based optimization algorithm that is inspired by the behaviour of birds flocking or fish 

schooling. 

PSO is used to optimize a solution to a specific problem by mimicking the social behaviour of the 

birds in a flock. Each "particle" in the swarm represents a potential solution to the problem, and the 

particles move in the search space guided by their own velocity and the best position that has been 

found by any particle in the swarm. 

The velocity of each particle is updated at each iteration based on its current position, the best 

position that it has found so far, and the best position that has been found by any particle in the 

swarm. The goal of the algorithm is to find the global optimal solution by having each particle in the 

swarm converge towards the best position found by the swarm. 

PSO is a simple and flexible algorithm that can be applied to a wide range of optimization problems. 

It has been successfully used in various fields, including machine learning, engineering, finance, and 

medicine. Additionally, PSO is simple to implement and computationally efficient, making it a 

popular choice for solving optimization problems. 

Discussion 
Particle Swarm Optimization (PSO) is a population-based optimization algorithm that is inspired by 

the collective behaviour of social animals, such as birds or fish, as they search for food. The 



algorithm was first introduced by Kennedy and Eberhart in 1995 as a computational intelligence 

algorithm to solve optimization problems. 

The basic idea of PSO is to maintain a swarm of particles, where each particle represents a candidate 

solution to the optimization problem. The particles move in the search space and are influenced by 

the best solution found so far (global best), as well as the best solution found by the particle itself 

(personal best). This allows the particles to converge towards the optimal solution. 

One of the key features of PSO is its ability to efficiently handle high-dimensional search spaces. This 

makes it a popular choice for solving complex optimization problems, particularly in the fields of 

engineering and finance. 

The PSO algorithm can be applied to various optimization problems, including linear and non-linear 

problems, multi-objective problems, and constraint optimization problems. The algorithm has been 

shown to perform well on a wide range of problems, and has been applied in a variety of domains, 

including engineering design, financial planning, and data analysis. 

The PSO algorithm has several advantages, including its simplicity, versatility, and ability to handle 

large search spaces. It is also computationally efficient, and can converge to a good solution in a 

relatively short amount of time. However, one of the main drawbacks of PSO is that it can be 

sensitive to the choice of parameters, and can sometimes get trapped in local optima. To overcome 

this, researchers have proposed various modifications to the basic PSO algorithm, such as dynamic 

adaptation of the parameters, and the use of different topologies for the particle swarm. 

In conclusion, Particle Swarm Optimization is a popular optimization algorithm that has been widely 

used in various domains. Its simplicity and versatility make it a useful tool for solving complex 

optimization problems. However, further research is needed to overcome its limitations and 

improve its performance in different domains. 

Strengths 
Particle Swarm Optimization (PSO) is a heuristic optimization algorithm that is inspired by the social 

behaviour of birds and other animals. PSO algorithms are used to solve a wide range of optimization 

problems, including subset-sum problems, by finding the optimal solution among a set of candidate 

solutions. 

Strengths of PSO algorithms include the following: 

1. Easy to implement: PSO algorithms are relatively easy to implement, compared to other 

optimization algorithms, making them accessible to a wide range of users. 

2. Global optimization: PSO algorithms are capable of finding the global optimum solution, 

rather than getting stuck in a local optimum solution. 

3. Flexibility: PSO algorithms can be applied to a wide range of optimization problems, 

including both single and multi-objective problems. 

4. High accuracy: PSO algorithms have been shown to have high accuracy in finding the optimal 

solution to many optimization problems. 

5. Parallel implementation: PSO algorithms can be easily implemented in parallel, making them 

suitable for solving large-scale optimization problems. 



6. Convergence speed: PSO algorithms generally converge faster than other optimization 

algorithms, making them suitable for real-time applications. 

7. Robustness: PSO algorithms are robust to noisy and uncertain environments, making them 

suitable for use in real-world applications. 

Overall, the strengths of PSO algorithms make them a popular choice for solving a wide range of 

optimization problems, including subset-sum problems, and they have been widely used in many 

different fields, including engineering, finance, and biology. 

Weaknesses 
The concept of Particle Swarm Optimization (PSO) is a metaheuristic optimization algorithm that is 

based on the social behaviour of birds or fish. It was introduced by Kennedy and Eberhart in 1995. 

PSO is a population-based algorithm, meaning that it operates on a group of candidate solutions, 

referred to as particles, to find the optimal solution. 

Despite its popularity, PSO is not immune to weaknesses. Here are some of the main weaknesses of 

PSO: 

Initialization sensitivity: The initial positions and velocities of particles in PSO can significantly affect 

the performance of the algorithm. If the particles are not initialized properly, the algorithm may not 

converge to the global optimum, or may take longer to converge. 

Convergence rate: PSO can converge slowly, especially for complex optimization problems. The 

convergence rate is also affected by the choice of the PSO parameters such as the learning factor 

and the velocity clamping range. 

Local minima: PSO can be trapped by local minima and may not find the global optimum. This can be 

overcome by using more advanced PSO variants such as the inertia weight PSO or the constricted 

PSO, but these variants can also be affected by the choice of parameters. 

Convergence stability: PSO can be unstable, and its convergence can be affected by small changes in 

the problem definition or the algorithm parameters. This makes it difficult to apply PSO to real-world 

optimization problems where the problem definition may be uncertain or changing. 

Complexity: PSO can be computationally expensive, especially for high-dimensional optimization 

problems, as it requires the evaluation of each particle at each iteration. Additionally, PSO can be 

sensitive to the choice of parameters, which can make it difficult to optimize the algorithm for 

different problems. 

Threats 
The threats posed by Particle Swarm Optimization (PSO) algorithms include: 

1. Convergence to local optima: PSO algorithms are based on the behaviour of a swarm of 

particles in a search space. The particles move and adjust their velocities based on the 

position of their neighbours and their personal bests. However, this behaviour can lead to 

the swarm converging to a local optimum instead of the global optimum. 

2. Difficulty in parameter tuning: PSO algorithms require several parameters to be set in order 

to operate effectively. These parameters include the population size, velocity bounds, and 



the weighting factors that control the influence of the personal bests and the global best on 

the velocity of the particles. If these parameters are not set correctly, the PSO algorithm can 

become ineffective or even converge to suboptimal solutions. 

3. Slow convergence: PSO algorithms are known to converge slowly in comparison to other 

optimization algorithms. This is due to the fact that the particles need to explore the search 

space in order to find the optimal solution. 

4. Sensitivity to initialization: PSO algorithms are also sensitive to the initial configuration of 

the particles. If the initial configuration of the particles is not appropriate, the algorithm may 

not converge to the optimal solution. 

5. Lack of guarantee of global optima: Unlike some other optimization algorithms, PSO 

algorithms do not guarantee that the global optimum will be found. This is due to the 

stochastic nature of the algorithm, which may lead to convergence to a local optimum. 

In order to mitigate these threats, various modifications and variants of the PSO algorithm have 

been developed, including constriction PSO, multi-objective PSO, and opposition-based PSO, among 

others. However, it is important to carefully consider the strengths and weaknesses of each variant 

in order to determine which one is best suited to a particular optimization problem. 

Opportunities 
Particle Swarm Optimization (PSO) is a meta-heuristic optimization algorithm that is inspired by the 

collective behaviour of birds in flocks, schools of fish, and swarms of insects. PSO has been applied to 

a wide range of optimization problems, including numerical optimization, machine learning, and 

engineering design. In this section, we will discuss the opportunities of PSO algorithms. 

1. Versatility: PSO is a flexible optimization technique that can be applied to a wide range of 

problems. PSO algorithms can be easily adapted to new problems and can be used to solve 

both continuous and discrete optimization problems. This versatility makes PSO a popular 

choice for many optimization tasks. 

2. Scalability: PSO algorithms are highly scalable and can be easily parallelized. This makes 

them suitable for large-scale optimization problems, where the size of the problem is too 

large to be solved using traditional optimization techniques. 

3. Global Optimization Capabilities: PSO algorithms have been proven to be effective at finding 

the global optimum solution to a problem. This is because they are designed to search the 

entire solution space, rather than getting trapped in local optimum solutions like some other 

optimization techniques. 

4. Simple Implementation: PSO algorithms are relatively simple to implement and require 

minimal computational resources. This makes them accessible to practitioners with limited 

computational resources. 

5. Robustness: PSO algorithms are robust and can handle complex problems, including 

problems with multiple local optimum solutions and problems with noise. 

6. Real-time Optimization: PSO algorithms can be applied in real-time, making them suitable 

for real-time optimization problems. 

7. Combination with Other Techniques: PSO algorithms can be combined with other 

optimization techniques to improve their performance. For example, PSO can be combined 

with gradient-based optimization techniques to improve convergence speed. 



In conclusion, Particle Swarm Optimization algorithms offer a range of opportunities for solving 

optimization problems. They are versatile, scalable, globally optimized, simple to implement, robust, 

real-time optimized and can be combined with other optimization techniques. 

Summary 
Particle Swarm Optimization (PSO) is a computational technique used to solve optimization 

problems, particularly those involving continuous functions. The PSO algorithm is based on the idea 

of simulating the behaviour of bird flocks or fish schools and has been applied in a wide range of 

areas, including machine learning, engineering, finance, and robotics. 

Strengths of PSO include its simplicity and ease of implementation, as well as its ability to find global 

optimal solutions, even for complex and multimodal problems. Unlike many other optimization 

algorithms, PSO does not require the specification of a gradient or the calculation of derivatives, 

which makes it particularly useful in situations where this information is not available. Additionally, 

PSO is relatively insensitive to the choice of initial conditions and has been shown to perform well in 

comparison to other optimization algorithms, such as genetic algorithms and simulated annealing. 

Weaknesses of PSO include its sensitivity to the choice of parameters and its dependence on the 

presence of a clear structure in the optimization problem. Additionally, PSO can be slow to converge 

and may not be suitable for problems with a large number of variables. To mitigate these limitations, 

researchers have proposed various modifications to the standard PSO algorithm, including the use of 

local search techniques, multi-objective PSO, and hybrid PSO algorithms. 

Threats to the application of PSO include the need for computationally intensive simulations, the 

difficulty of ensuring the stability and convergence of the algorithm, and the lack of a theoretical 

basis for PSO. To address these concerns, researchers have proposed new techniques for improving 

the performance and robustness of PSO, such as adaptive PSO, self-adaptive PSO, and randomized 

PSO. 

Overall, Particle Swarm Optimization has proven to be a useful and effective optimization technique, 

and has been widely adopted in many areas of study. Its strengths, including its ease of 

implementation and ability to find global optimal solutions, make it a valuable tool for solving a wide 

range of optimization problems. However, its limitations, including its sensitivity to parameter 

choices and its dependence on the presence of a clear structure in the optimization problem, must 

also be considered. Despite these limitations, the continued development and application of PSO 

algorithms holds great promise for the future. 

Key Thinker, their ideas, and seminal works 
Particle Swarm Optimization (PSO) is a computational intelligence optimization algorithm that was 

introduced by Eberhart and Kennedy in 1995. It is a population-based metaheuristic algorithm that is 

inspired by the behaviour of bird flocks and fish schools. PSO algorithms have been widely studied 

and applied to various optimization problems, including subset-sum problems. 

The key idea behind PSO algorithms is to use a population of particles to search the solution space. 

Each particle represents a candidate solution, and its position and velocity are updated based on its 

own best position (personal best) and the best position found by the entire swarm (global best). The 

updated position of a particle can be determined using the following equation: 



x(i) = x(i) + v(i) 

where x(i) is the position of the particle, and v(i) is its velocity. The velocity can be calculated as a 

weighted combination of the previous velocity, the difference between the personal best and 

current position, and the difference between the global best and current position. The PSO 

algorithm continues to iterate until a stopping criterion is met, such as reaching a maximum number 

of iterations or finding a solution that meets a certain threshold. 

Some of the key thinkers and seminal works in the field of PSO algorithms include: 

• Eberhart and Kennedy, who first introduced PSO in their paper "Particle Swarm 

Optimization" in 1995. 

• Clerc and Kennedy, who proposed a constriction factor in 2002 to improve the convergence 

of PSO algorithms. 

• Shi and Eberhart, who introduced the concept of inertia weight in 1998 to balance the global 

and local search capabilities of PSO algorithms. 

• Poli, Kennedy, and Blackwell, who proposed the diversity-guidance mechanism in 2007 to 

improve the diversity of the particle swarm. 

These works have greatly contributed to the development and understanding of PSO algorithms, and 

have demonstrated their effectiveness for various optimization problems, including subset-sum 

problems. 

Example in Phython Code 

Given: U = [1, 2, 4, 11, 14, 18, 22, 29, 33, 37, 45, 47, 52, 53, 77, 82, 87, 92, 95, 99] 

k = 4 
Here is an example of a Particle Swarm Optimization (PSO) algorithm for solving the sub-set sum 

problem in Python: 

def generate_particle(U, k): 

    particle = [random.randint(0, 1) for i in range(len(U))] 

    return particle 

 

 

def update_velocity(particle, best_particle, velocity): 

    for i in range(len(particle)): 

        r1 = random.uniform(0, 1) 

        r2 = random.uniform(0, 1) 

        velocity[i] = 0.729 * velocity[i] + 1.49445 * r1 * 

(best_particle[i] - particle[i]) + 1.49445 * r2 * ( 

                    particle[i] - best_particle[i]) 

        velocity[i] = min(velocity[i], 5) 

        velocity[i] = max(velocity[i], -5) 

        if velocity[i] >= 0: 

            particle[i] = 1 

        else: 

            particle[i] = 0 

    return particle, velocity 

 

 

def update_position(particle, velocity): 

    for i in range(len(particle)): 

        particle[i] = particle[i] + velocity[i] 



        particle[i] = round(particle[i]) 

        particle[i] = int(particle[i]) 

    return particle 

 

 

def fitness(particle, U, k): 

    current_sum = 0 

    for i in range(len(particle)): 

        current_sum += particle[i] * U[i] 

    if current_sum <= k: 

        return len(particle) 

    else: 

        return 0 

 

 

def particle_swarm_optimization(U, k, iterations): 

    particle_count = 50 

    particles = [generate_particle(U, k) for i in range(particle_count)] 

    velocities = [[random.uniform(-5, 5) for i in range(len(U))] for j in 

range(particle_count)] 

    best_particles = [None for i in range(particle_count)] 

    best_fitness = [0 for i in range(particle_count)] 

    global_best_particle = None 

    global_best_fitness = 0 

 

    for iteration in range(iterations): 

        for i in range(particle_count): 

            particle = particles[i] 

            fitness_value = fitness(particle, U, k) 

            if fitness_value > best_fitness[i]: 

                best_fitness[i] = fitness_value 

                best_particles[i] = particle 

                if fitness_value > global_best_fitness: 

                    global_best_fitness = fitness_value 

                    global_best_particle = particle 

        for i in range(particle_count): 

            particles[i], velocities[i] = update_velocity(particles[i], 

best_particles[i], velocities[i]) 

            particles[i] = update_position(particles[i], velocities[i]) 

    return global_best_particle 

 

import random 

 

U = [1, 2, 4, 11, 14, 18, 22, 29, 33, 37, 45, 47, 52, 53, 77, 82, 87, 92, 

95, 99] 

k = 4 

n = len(U) 

 

def generate_particle(): 

    particle = [random.random() < 0.5 for i in range(n)] 

    return particle 

 

def evaluate_fitness(particle): 

    current_sum = 0 

    for i in range(n): 

        if particle[i]: 

            current_sum += U[i] 

    if current_sum <= k: 

        return len([i for i in particle if i]) 

    else: 

        return 0 



 

def generate_velocity(particle1, particle2, w, c1, c2): 

    velocity = [] 

    for i in range(n): 

        v = w * particle1[i] + c1 * random.random() * (particle2[i] - 

particle1[i]) + c2 * random.random() * (global_best_particle[i] - 

particle1[i]) 

        if v > 0.5: 

            velocity.append(1) 

        else: 

            velocity.append(0) 

    return velocity 

 

def update_particle(particle, velocity): 

    new_particle = [] 

    for i in range(n): 

        if velocity[i] > random.random(): 

            new_particle.append(1) 

        else: 

            new_particle.append(0) 

    return new_particle 

 

def PSO(particles, max_iterations): 

    global global_best_particle 

    global_best_particle = particles[0] 

    global_best_fitness = evaluate_fitness(global_best_particle) 

 

    for t in range(max_iterations): 

        for particle in particles: 

            fitness = evaluate_fitness(particle) 

            if fitness > evaluate_fitness(global_best_particle): 

                global_best_particle = particle 

                global_best_fitness = fitness 

 

        for i in range(len(particles)): 

            particle1 = particles[i] 

            particle2 = global_best_particle 

            velocity = generate_velocity(particle1, particle2, w=0.5, c1=2, 

c2=2) 

            new_particle = update_particle(particle1, velocity) 

            particles[i] = new_particle 

 

    return global_best_particle 

 

num_particles = 20 

max_iterations = 100 

 

particles = [generate_particle() for i in range(num_particles)] 

best_particle = PSO(particles, max_iterations) 

best_subset = [U[i] for i in range(n) if best_particle[i]] 

 

print("Best Subset:", best_subset) 

print("Sum:", sum(best_subset)) 

 

In this code, the Particle Swarm Optimization algorithm is implemented to solve the subset sum 

problem. The function ‘generate_particle’ generates a random particle representing a subset of the 

input set ‘U’. The ‘particle_swarm_optimization’ function takes in ‘U’, ‘k’, the number of particles 

‘num_particles’ and the number of iterations ‘num_iterations’ as input parameters. The algorithm 



starts by initializing ‘num_particles’ number of particles, each representing a random subset of ‘U’. 

The fitness of each particle is calculated as the sum of the items in the subset. The algorithm then 

performs ‘num_iterations’ of updates to the particles. In each iteration, each particle is updated by 

considering a new particle generated by randomly flipping some of the items in the original particle. 

If the new particle has a better fitness than the original particle, it is updated. The best particle 

found so far is also stored for each iteration. Finally, the best subset and its fitness is returned. 


